current assets |
---|
606b3../c77cf.. bday: 4982 doc published by Pr6Pc..Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Param bijbij : ι → ι → (ι → ι) → οKnown bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4) ⟶ (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 : ο . (∀ x5 . and (x5 ∈ x0) (x2 x5 = x3) ⟶ x4) ⟶ x4) ⟶ bij x0 x1 x2Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param equipequip : ι → ι → οDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5 ⟶ x3 x5 x4) ⟶ or (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (equip x0 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ x3 x6 x7)) ⟶ x4) ⟶ x4) (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (equip x1 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ not (x3 x6 x7))) ⟶ x4) ⟶ x4)Param nat_pnat_p : ι → οParam ordsuccordsucc : ι → ιKnown nat_5nat_5 : nat_p 5Param ordinalordinal : ι → οKnown f8b84.. : ∀ x0 . equip 3 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ ordinal x1) ⟶ ∀ x1 : ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 ∈ x3 ⟶ x3 ∈ x4 ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 : ι → ο . x6 x2 ⟶ x6 x3 ⟶ x6 x4 ⟶ x6 x5) ⟶ x1) ⟶ x1Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known neq_0_2neq_0_2 : 0 = 2 ⟶ ∀ x0 : ο . x0Known neq_1_2neq_1_2 : 1 = 2 ⟶ ∀ x0 : ο . x0Known neq_4_1neq_4_1 : 4 = 1 ⟶ ∀ x0 : ο . x0Known neq_4_3neq_4_3 : 4 = 3 ⟶ ∀ x0 : ο . x0Known neq_3_2neq_3_2 : 3 = 2 ⟶ ∀ x0 : ο . x0Known neq_4_2neq_4_2 : 4 = 2 ⟶ ∀ x0 : ο . x0Known neq_0_1neq_0_1 : 0 = 1 ⟶ ∀ x0 : ο . x0Known neq_4_0neq_4_0 : 4 = 0 ⟶ ∀ x0 : ο . x0Known neq_2_1neq_2_1 : 2 = 1 ⟶ ∀ x0 : ο . x0Known neq_3_1neq_3_1 : 3 = 1 ⟶ ∀ x0 : ο . x0Known neq_3_0neq_3_0 : 3 = 0 ⟶ ∀ x0 : ο . x0Known neq_1_0neq_1_0 : 1 = 0 ⟶ ∀ x0 : ο . x0Known neq_2_0neq_2_0 : 2 = 0 ⟶ ∀ x0 : ο . x0Known or5Eor5E : ∀ x0 x1 x2 x3 x4 : ο . or (or (or (or x0 x1) x2) x3) x4 ⟶ ∀ x5 : ο . (x0 ⟶ x5) ⟶ (x1 ⟶ x5) ⟶ (x2 ⟶ x5) ⟶ (x3 ⟶ x5) ⟶ (x4 ⟶ x5) ⟶ x5Known or5I5or5I5 : ∀ x0 x1 x2 x3 x4 : ο . x4 ⟶ or (or (or (or x0 x1) x2) x3) x4Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known orIRorIR : ∀ x0 x1 : ο . x1 ⟶ or x0 x1Known orILorIL : ∀ x0 x1 : ο . x0 ⟶ or x0 x1Known or5I4or5I4 : ∀ x0 x1 x2 x3 x4 : ο . x3 ⟶ or (or (or (or x0 x1) x2) x3) x4Known or5I3or5I3 : ∀ x0 x1 x2 x3 x4 : ο . x2 ⟶ or (or (or (or x0 x1) x2) x3) x4Known or5I2or5I2 : ∀ x0 x1 x2 x3 x4 : ο . x1 ⟶ or (or (or (or x0 x1) x2) x3) x4Known or5I1or5I1 : ∀ x0 x1 x2 x3 x4 : ο . x0 ⟶ or (or (or (or x0 x1) x2) x3) x4Theorem e6ef8.. : ∀ x0 : ο . (∀ x1 : ι → ι → ο . (∀ x2 : ο . ((∀ x3 x4 . x1 x3 x4 ⟶ x1 x4 x3) ⟶ x1 0 1 ⟶ x1 1 2 ⟶ x1 2 3 ⟶ x1 3 4 ⟶ x1 4 0 ⟶ not (x1 0 2) ⟶ not (x1 0 3) ⟶ not (x1 1 3) ⟶ not (x1 1 4) ⟶ not (x1 2 4) ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0 (proof)Known cases_5cases_5 : ∀ x0 . x0 ∈ 5 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 1 ⟶ x1 2 ⟶ x1 3 ⟶ x1 4 ⟶ x1 x0Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known EmptyEEmptyE : ∀ x0 . nIn x0 0Known cases_1cases_1 : ∀ x0 . x0 ∈ 1 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 x0Known cases_2cases_2 : ∀ x0 . x0 ∈ 2 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 1 ⟶ x1 x0Known cases_3cases_3 : ∀ x0 . x0 ∈ 3 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 1 ⟶ x1 2 ⟶ x1 x0Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known cases_4cases_4 : ∀ x0 . x0 ∈ 4 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 1 ⟶ x1 2 ⟶ x1 3 ⟶ x1 x0Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0 ⟶ ordinal x0Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ nat_p x1Theorem not_TwoRamseyProp_3_3_5not_TwoRamseyProp_3_3_5 : not (TwoRamseyProp 3 3 5) (proof)
|
|