Search for blocks/addresses/...

Proofgold Address

address
PUQAiN9Pjo2jcqt3gnzHRZKhmbVNR8NZihq
total
0
mg
-
conjpub
-
current assets
d5aeb../1fdfe.. bday: 1476 doc published by PrGxv..
Known andEandE : ∀ x0 x1 : ο . and x0 x1∀ x2 : ο . (x0x1x2)x2
Theorem 17e35..exandE_ii : ∀ x0 x1 : (ι → ι) → ο . (∀ x2 : ο . (∀ x3 : ι → ι . and (x0 x3) (x1 x3)x2)x2)∀ x2 : ο . (∀ x3 : ι → ι . x0 x3x1 x3x2)x2 (proof)
Known 3aba6..exactly1of2_def : exactly1of2 = λ x1 x2 : ο . or (and x1 (not x2)) (and (not x1) x2)
Known 26b88..tab_pos_or : ∀ x0 x1 : ο . or x0 x1(x0False)(x1False)False
Theorem 70d65..tab_pos_exactly1of2 : ∀ x0 x1 : ο . exactly1of2 x0 x1(x0not x1False)(not x0x1False)False (proof)
Known 6a5f4..tab_neg_or : ∀ x0 x1 : ο . not (or x0 x1)(not x0not x1False)False
Known 77eb0..tab_neg_and : ∀ x0 x1 : ο . not (and x0 x1)(not x0False)(not x1False)False
Known notEnotE : ∀ x0 : ο . not x0x0False
Known 5f92b..dneg : ∀ x0 : ο . not (not x0)x0
Theorem 6fb1f..tab_neg_exactly1of2 : ∀ x0 x1 : ο . not (exactly1of2 x0 x1)(x0x1False)(not x0not x1False)False (proof)
Known 71e01..exactly1of3_def : exactly1of3 = λ x1 x2 x3 : ο . or (and (exactly1of2 x1 x2) (not x3)) (and (and (not x1) (not x2)) x3)
Known 57def..tab_pos_and : ∀ x0 x1 : ο . and x0 x1(x0x1False)False
Theorem 60b29..tab_pos_exactly1of3 : ∀ x0 x1 x2 : ο . exactly1of3 x0 x1 x2(x0not x1not x2False)(not x0x1not x2False)(not x0not x1x2False)False (proof)
Theorem e5479..tab_neg_exactly1of3 : ∀ x0 x1 x2 : ο . not (exactly1of3 x0 x1 x2)(not x0not x1not x2False)(x0x1False)(x0x2False)(x1x2False)False (proof)
Known b4782..contra : ∀ x0 : ο . (not x0False)x0
Known 24526..nIn_E2 : ∀ x0 x1 . nIn x0 x1In x0 x1False
Known 61ad0..In_ind : ∀ x0 : ι → ο . (∀ x1 . (∀ x2 . In x2 x1x0 x2)x0 x1)∀ x1 . x0 x1
Known 9d2e6..nIn_I2 : ∀ x0 x1 . (In x0 x1False)nIn x0 x1
Known 7c02f..andI : ∀ x0 x1 : ο . x0x1and x0 x1
Known 8106d..notI : ∀ x0 : ο . (x0False)not x0
Known 61640..exandE_i : ∀ x0 x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x0 x3) (x1 x3)x2)x2)∀ x2 : ο . (∀ x3 . x0 x3x1 x3x2)x2
Theorem 3903a..Regularity : ∀ x0 x1 . In x1 x0∀ x2 : ο . (∀ x3 . and (In x3 x0) (not (∀ x4 : ο . (∀ x5 . and (In x5 x0) (In x5 x3)x4)x4))x2)x2 (proof)
Known 6e0ca..In_rec_G_i_def : In_rec_poly_G_i = λ x1 : ι → (ι → ι) → ι . λ x2 x3 . ∀ x4 : ι → ι → ο . (∀ x5 . ∀ x6 : ι → ι . (∀ x7 . In x7 x5x4 x7 (x6 x7))x4 x5 (x1 x5 x6))x4 x2 x3
Theorem 0857e..In_rec_G_i_c : ∀ x0 : ι → (ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 . In x3 x1In_rec_poly_G_i x0 x3 (x2 x3))In_rec_poly_G_i x0 x1 (x0 x1 x2) (proof)
Theorem a0610..In_rec_G_i_inv : ∀ x0 : ι → (ι → ι) → ι . ∀ x1 x2 . In_rec_poly_G_i x0 x1 x2∀ x3 : ο . (∀ x4 : ι → ι . and (∀ x5 . In x5 x1In_rec_poly_G_i x0 x5 (x4 x5)) (x2 = x0 x1 x4)x3)x3 (proof)
Theorem e5412..In_rec_G_i_f : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . In x4 x1x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 x2 x3 . In_rec_poly_G_i x0 x1 x2In_rec_poly_G_i x0 x1 x3x2 = x3 (proof)
Known 02a06..In_rec_i_def : In_rec_poly_i = λ x1 : ι → (ι → ι) → ι . λ x2 . Eps_i (In_rec_poly_G_i x1 x2)
Known 4cb75..Eps_i_R : ∀ x0 : ι → ο . ∀ x1 . x0 x1x0 (Eps_i x0)
Theorem 6f6a6..In_rec_G_i_In_rec_i : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . In x4 x1x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . In_rec_poly_G_i x0 x1 (In_rec_poly_i x0 x1) (proof)
Theorem bcc7f..In_rec_G_i_In_rec_d : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . In x4 x1x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . In_rec_poly_G_i x0 x1 (x0 x1 (In_rec_poly_i x0)) (proof)
Theorem f78bc..In_rec_i_eq : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . In x4 x1x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . In_rec_poly_i x0 x1 = x0 x1 (In_rec_poly_i x0) (proof)
Known 2cd4b..Inj1_def : Inj1 = In_rec_poly_i (λ x1 . λ x2 : ι → ι . binunion (Sing 0) (Repl x1 x2))
Known 09697..ReplEq_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . In x3 x0x1 x3 = x2 x3)Repl x0 x1 = Repl x0 x2
Theorem d1941..Inj1_eq : ∀ x0 . Inj1 x0 = binunion (Sing 0) (Repl x0 Inj1) (proof)
Known 0ce8c..binunionI1 : ∀ x0 x1 x2 . In x2 x0In x2 (binunion x0 x1)
Known 1f15b..SingI : ∀ x0 . In x0 (Sing x0)
Theorem 8d83e..Inj1I1 : ∀ x0 . In 0 (Inj1 x0) (proof)
Known eb8b4..binunionI2 : ∀ x0 x1 x2 . In x2 x1In x2 (binunion x0 x1)
Known f1bf4..ReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 x0In (x1 x2) (Repl x0 x1)
Theorem 22441..Inj1I2 : ∀ x0 x1 . In x1 x0In (Inj1 x1) (Inj1 x0) (proof)
Known f9974..binunionE_cases : ∀ x0 x1 x2 . In x2 (binunion x0 x1)∀ x3 : ο . (In x2 x0x3)(In x2 x1x3)x3
Known dcbd9..orIL : ∀ x0 x1 : ο . x0or x0 x1
Known 9ae18..SingE : ∀ x0 x1 . In x1 (Sing x0)x1 = x0
Known eca40..orIR : ∀ x0 x1 : ο . x1or x0 x1
Known 74a75..ReplE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (Repl x0 x1)∀ x3 : ο . (∀ x4 . and (In x4 x0) (x2 = x1 x4)x3)x3
Theorem f3200..Inj1E : ∀ x0 x1 . In x1 (Inj1 x0)or (x1 = 0) (∀ x2 : ο . (∀ x3 . and (In x3 x0) (x1 = Inj1 x3)x2)x2) (proof)
Known 37124..orE : ∀ x0 x1 : ο . or x0 x1∀ x2 : ο . (x0x2)(x1x2)x2
Theorem 474ab..Inj1E_impred : ∀ x0 x1 . In x1 (Inj1 x0)∀ x2 : ι → ο . x2 0(∀ x3 . In x3 x0x2 (Inj1 x3))x2 x1 (proof)
Known 2901c..EmptyE : ∀ x0 . In x0 0False
Theorem a1706..Inj1NE1 : ∀ x0 . not (Inj1 x0 = 0) (proof)
Theorem a6792..Inj1NE2 : ∀ x0 . nIn (Inj1 x0) (Sing 0) (proof)
Known 4f75b..Inj0_def : Inj0 = λ x1 . Repl x1 Inj1
Theorem 88e5c..Inj0I : ∀ x0 x1 . In x1 x0In (Inj1 x1) (Inj0 x0) (proof)
Theorem 0e45c..Inj0E : ∀ x0 x1 . In x1 (Inj0 x0)∀ x2 : ο . (∀ x3 . and (In x3 x0) (x1 = Inj1 x3)x2)x2 (proof)
Theorem 5bd6f..Inj0E_impred : ∀ x0 x1 . In x1 (Inj0 x0)∀ x2 : ι → ο . (∀ x3 . In x3 x0x2 (Inj1 x3))x2 x1 (proof)
Known f7ea7..Unj_def : Unj = In_rec_poly_i (λ x1 . Repl (setminus x1 (Sing 0)))
Known 54d83..setminusE1 : ∀ x0 x1 x2 . In x2 (setminus x0 x1)In x2 x0
Theorem f52b8..Unj_eq : ∀ x0 . Unj x0 = Repl (setminus x0 (Sing 0)) Unj (proof)
Known 535f2..set_ext_2 : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)(∀ x2 . In x2 x1In x2 x0)x0 = x1
Known 0f096..ReplE2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (Repl x0 x1)∀ x3 : ο . (∀ x4 . In x4 x0x2 = x1 x4x3)x3
Known 243aa..setminusE_impred : ∀ x0 x1 x2 . In x2 (setminus x0 x1)∀ x3 : ο . (In x2 x0nIn x2 x1x3)x3
Known FalseEFalseE : False∀ x0 : ο . x0
Known 626dc..setminusI : ∀ x0 x1 x2 . In x2 x0nIn x2 x1In x2 (setminus x0 x1)
Theorem c76aa..Unj_Inj1_eq : ∀ x0 . Unj (Inj1 x0) = x0 (proof)
Theorem 0139a..Inj1_inj : ∀ x0 x1 . Inj1 x0 = Inj1 x1x0 = x1 (proof)
Theorem c3d4f..Unj_Inj0_eq : ∀ x0 . Unj (Inj0 x0) = x0 (proof)
Theorem 49afe..Inj0_inj : ∀ x0 x1 . Inj0 x0 = Inj0 x1x0 = x1 (proof)
Known 8a1cd..Repl_Empty : ∀ x0 : ι → ι . Repl 0 x0 = 0
Theorem fc3ab..Inj0_0 : Inj0 0 = 0 (proof)
Theorem efcec..Inj0_Inj1_neq : ∀ x0 x1 . not (Inj0 x0 = Inj1 x1) (proof)
Known 26db0..setsum_def : setsum = λ x1 x2 . binunion (Repl x1 Inj0) (Repl x2 Inj1)
Theorem 93236..Inj0_setsum : ∀ x0 x1 x2 . In x2 x0In (Inj0 x2) (setsum x0 x1) (proof)
Theorem 9ea3e..Inj1_setsum : ∀ x0 x1 x2 . In x2 x1In (Inj1 x2) (setsum x0 x1) (proof)
Theorem 76cef..setsum_Inj_inv : ∀ x0 x1 x2 . In x2 (setsum x0 x1)or (∀ x3 : ο . (∀ x4 . and (In x4 x0) (x2 = Inj0 x4)x3)x3) (∀ x3 : ο . (∀ x4 . and (In x4 x1) (x2 = Inj1 x4)x3)x3) (proof)
Theorem 351c1..setsum_Inj_inv_impred : ∀ x0 x1 x2 . In x2 (setsum x0 x1)∀ x3 : ι → ο . (∀ x4 . In x4 x0x3 (Inj0 x4))(∀ x4 . In x4 x1x3 (Inj1 x4))x3 x2 (proof)
Theorem b9c5c..Inj0_setsum_0L : ∀ x0 . setsum 0 x0 = Inj0 x0 (proof)
Known b0dce..SubqI : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)Subq x0 x1
Known 367e6..SubqE : ∀ x0 x1 . Subq x0 x1∀ x2 . In x2 x0In x2 x1
Theorem 374e6..pairSubq : ∀ x0 x1 x2 x3 . Subq x0 x2Subq x1 x3Subq (setsum x0 x1) (setsum x2 x3) (proof)
Known 59a1f..combine_funcs_def : combine_funcs = λ x1 x2 . λ x3 x4 : ι → ι . λ x5 . If_i (x5 = Inj0 (Unj x5)) (x3 (Unj x5)) (x4 (Unj x5))
Known 0d2f9..If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem 34a93..combine_funcs_eq1 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj0 x4) = x2 x4 (proof)
Known 81513..If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Theorem d805a..combine_funcs_eq2 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj1 x4) = x3 x4 (proof)

previous assets