Search for blocks/addresses/...

Proofgold Address

address
PUQwZRs1Syn2Noq6nHunLXFFsCYKu29BMGr
total
0
mg
-
conjpub
-
current assets
ddb83../55562.. bday: 30793 doc published by Pr5Zc..
Param odd_natodd_nat : ιο
Param equipequip : ιιο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known d3cb5.. : ∀ x0 x1 . odd_nat x1equip x0 x1∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x0)(∀ x3 . x3x0x2 (x2 x3) = x3)∀ x3 : ο . (∀ x4 . and (x4x0) (x2 x4 = x4)x3)x3
Param nat_pnat_p : ιο
Known 74e07.. : ∀ x0 . nat_p x0∀ x1 . equip x0 x1∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x1)(∀ x3 . x3x1x2 (x2 x3) = x3)(∀ x3 : ο . (∀ x4 . and (x4x1) (and (x2 x4 = x4) (∀ x5 . x5x1x2 x5 = x5x4 = x5))x3)x3)odd_nat x0
Param SNoSNo : ιο
Param mul_SNomul_SNo : ιιι
Param add_SNoadd_SNo : ιιι
Known 7bd74.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (add_SNo x0 (add_SNo x1 x2)) x3 = add_SNo (mul_SNo x0 x3) (add_SNo (mul_SNo x1 x3) (mul_SNo x2 x3))
Param ordsuccordsucc : ιι
Param minus_SNominus_SNo : ιι
Param omegaomega : ι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Param apap : ιιι
Param SNoLtSNoLt : ιιο
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Param ordinalordinal : ιο
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known add_SNo_In_omegaadd_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegaadd_SNo x0 x1omega
Known mul_SNo_In_omegamul_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo x0 x1omega
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_2nat_2 : nat_p 2
Param intint : ι
Param SNoLeSNoLe : ιιο
Known aa7e8..nonneg_int_nat_p : ∀ x0 . x0intSNoLe 0 x0nat_p x0
Known int_add_SNoint_add_SNo : ∀ x0 . x0int∀ x1 . x1intadd_SNo x0 x1int
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known Subq_omega_intSubq_omega_int : omegaint
Known int_minus_SNoint_minus_SNo : ∀ x0 . x0intminus_SNo x0int
Known add_SNo_minus_Le2badd_SNo_minus_Le2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x2 x1) x0SNoLe x2 (add_SNo x0 (minus_SNo x1))
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_0SNo_0 : SNo 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known 8b4bf.. : ∀ x0 x1 . SNo x0SNo x1mul_SNo (add_SNo x0 x1) (add_SNo x0 x1) = add_SNo (mul_SNo x0 x0) (add_SNo (mul_SNo 2 (mul_SNo x0 x1)) (mul_SNo x1 x1))
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known SNo_2SNo_2 : SNo 2
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known mul_SNo_com_4_inner_midmul_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) = mul_SNo (mul_SNo x0 x2) (mul_SNo x1 x3)
Known ecc46.. : mul_SNo 2 2 = 4
Known add_SNo_assoc_4add_SNo_assoc_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo (add_SNo x0 (add_SNo x1 x2)) x3
Known 48da5.. : SNo 4
Known add_SNo_rotate_3_1add_SNo_rotate_3_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x2 (add_SNo x0 x1)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known 55f68.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo x3 (add_SNo x0 (add_SNo x1 x2)) = add_SNo (mul_SNo x3 x0) (add_SNo (mul_SNo x3 x1) (mul_SNo x3 x2))
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known add_SNo_minus_Lt2b3add_SNo_minus_Lt2b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x3 x2) (add_SNo x0 x1)SNoLt x3 (add_SNo x0 (add_SNo x1 (minus_SNo x2)))
Known b5021.. : ∀ x0 x1 . SNo x0SNo x1mul_SNo (add_SNo x0 (minus_SNo x1)) (add_SNo x0 (minus_SNo x1)) = add_SNo (mul_SNo x0 x0) (add_SNo (minus_SNo (mul_SNo 2 (mul_SNo x0 x1))) (mul_SNo x1 x1))
Known SNo_add_SNo_3SNo_add_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (add_SNo x0 (add_SNo x1 x2))
Known add_SNo_rotate_5_1add_SNo_rotate_5_1 : ∀ x0 x1 x2 x3 x4 . SNo x0SNo x1SNo x2SNo x3SNo x4add_SNo x0 (add_SNo x1 (add_SNo x2 (add_SNo x3 x4))) = add_SNo x4 (add_SNo x0 (add_SNo x1 (add_SNo x2 x3)))
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_minus_L2add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (minus_SNo x0) (add_SNo x0 x1) = x1
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known tuple_3_0_eqtuple_3_0_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 0 = x0
Known tuple_3_1_eqtuple_3_1_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 1 = x1
Known tuple_3_2_eqtuple_3_2_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 2 = x2
Known add_SNo_minus_R2add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known d67ed.. : ∀ x0 . SNo x0mul_SNo 2 x0 = add_SNo x0 x0
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known add_SNo_minus_R2'add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 (minus_SNo x1)) x1 = x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known ordinal_SNoLt_Inordinal_SNoLt_In : ∀ x0 x1 . ordinal x0ordinal x1SNoLt x0 x1x0x1
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known int_mul_SNoint_mul_SNo : ∀ x0 . x0int∀ x1 . x1intmul_SNo x0 x1int
Known nat_p_intnat_p_int : ∀ x0 . nat_p x0x0int
Theorem 91770.. : ∀ x0 x1 x2 : ι → ι → ι → ι . ∀ x3 x4 x5 : ι → ι → ι → ο . (∀ x6 x7 x8 . x3 x6 x7 x8x0 x6 x7 x8 = add_SNo x6 (mul_SNo 2 x8))(∀ x6 x7 x8 . x3 x6 x7 x8x1 x6 x7 x8 = x8)(∀ x6 x7 x8 . x3 x6 x7 x8x2 x6 x7 x8 = add_SNo x7 (minus_SNo (add_SNo x6 x8)))(∀ x6 x7 x8 . x4 x6 x7 x8x0 x6 x7 x8 = add_SNo (mul_SNo 2 x7) (minus_SNo x6))(∀ x6 x7 x8 . x4 x6 x7 x8x1 x6 x7 x8 = x7)(∀ x6 x7 x8 . x4 x6 x7 x8x2 x6 x7 x8 = add_SNo x6 (add_SNo x8 (minus_SNo x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x0 x6 x7 x8 = add_SNo x6 (minus_SNo (mul_SNo 2 x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x1 x6 x7 x8 = add_SNo x6 (add_SNo x8 (minus_SNo x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x2 x6 x7 x8 = x7)(∀ x6 x7 x8 . add_SNo x6 x8x7x3 x6 x7 x8)(∀ x6 x7 x8 . x3 x6 x7 x8add_SNo x6 x8x7)(∀ x6 x7 x8 . x7add_SNo x6 x8x6mul_SNo 2 x7x4 x6 x7 x8)(∀ x6 x7 x8 . x4 x6 x7 x8x7add_SNo x6 x8)(∀ x6 x7 x8 . x4 x6 x7 x8x6mul_SNo 2 x7)(∀ x6 x7 x8 . x7add_SNo x6 x8mul_SNo 2 x7x6x5 x6 x7 x8)(∀ x6 x7 x8 . x5 x6 x7 x8x7add_SNo x6 x8)(∀ x6 x7 x8 . x5 x6 x7 x8mul_SNo 2 x7x6)∀ x6 . x6omega∀ x7 . equip x7 x6(∀ x8 . x8x7lam 3 (λ x10 . If_i (x10 = 0) (ap x8 0) (If_i (x10 = 1) (ap x8 1) (ap x8 2))) = x8)(∀ x8 x9 x10 . lam 3 (λ x11 . If_i (x11 = 0) x8 (If_i (x11 = 1) x9 x10))x7∀ x11 : ο . (x8omegax9omegax10omegaSNoLt 0 x8SNoLt 0 x9SNoLt 0 x10(add_SNo x8 x10 = x9∀ x12 : ο . x12)(x8 = mul_SNo 2 x9∀ x12 : ο . x12)lam 3 (λ x12 . If_i (x12 = 0) x8 (If_i (x12 = 1) x10 x9))x7x11)x11)(∀ x8 x9 x10 x11 . x11omega∀ x12 . x12omega∀ x13 . x13omegalam 3 (λ x14 . If_i (x14 = 0) x8 (If_i (x14 = 1) x9 x10))x7add_SNo (mul_SNo x11 x11) (mul_SNo 4 (mul_SNo x12 x13)) = add_SNo (mul_SNo x8 x8) (mul_SNo 4 (mul_SNo x9 x10))lam 3 (λ x14 . If_i (x14 = 0) x11 (If_i (x14 = 1) x12 x13))x7)∀ x8 x9 x10 . lam 3 (λ x11 . If_i (x11 = 0) x8 (If_i (x11 = 1) x9 x10))x7x0 x8 x9 x10 = x8x1 x8 x9 x10 = x9x2 x8 x9 x10 = x10(∀ x11 x12 x13 . lam 3 (λ x14 . If_i (x14 = 0) x11 (If_i (x14 = 1) x12 x13))x7x0 x11 x12 x13 = x11x1 x11 x12 x13 = x12x2 x11 x12 x13 = x13and (and (x11 = x8) (x12 = x9)) (x13 = x10))∀ x11 : ο . (∀ x12 . (∀ x13 : ο . (∀ x14 . lam 3 (λ x15 . If_i (x15 = 0) x12 (If_i (x15 = 1) x14 x14))x7x13)x13)x11)x11 (proof)

previous assets