Search for blocks/addresses/...

Proofgold Address

address
PUUTmmPw4DpVgTqJsg1zhQgaTYukXLVZSzP
total
0
mg
-
conjpub
-
current assets
875cb../c30f3.. bday: 4786 doc published by PrGxv..
Param and : οοο
Definition inj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . prim1 x3 x0prim1 (x2 x3) x1) (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0x2 x3 = x2 x4x3 = x4)
Definition surj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . prim1 x3 x0prim1 (x2 x3) x1) (∀ x3 . prim1 x3 x1∀ x4 : ο . (∀ x5 . and (prim1 x5 x0) (x2 x5 = x3)x4)x4)
Param 48ef8.. : ι
Param c2e41.. : ιιο
Definition 6eae3.. := λ x0 . ∀ x1 : ο . (∀ x2 . and (prim1 x2 48ef8..) (c2e41.. x0 x2)x1)x1
Definition False := ∀ x0 : ο . x0
Definition not := λ x0 : ο . x0False
Definition c036a.. := λ x0 . not (6eae3.. x0)
Param 14149.. : ιιι
Definition 0a59d.. := λ x0 x1 . and (and (prim1 x0 48ef8..) (prim1 x1 48ef8..)) (∀ x2 : ο . (∀ x3 . and (prim1 x3 48ef8..) (14149.. x0 x3 = x1)x2)x2)
Param 4ae4a.. : ιι
Param 4a7ef.. : ι
Param or : οοο
Definition 94fdb.. := λ x0 . and (and (prim1 x0 48ef8..) (prim1 (4ae4a.. 4a7ef..) x0)) (∀ x1 . prim1 x1 48ef8..0a59d.. x1 x0or (x1 = 4ae4a.. 4a7ef..) (x1 = x0))
Param 1ad11.. : ιιι
Definition 2a940.. := λ x0 x1 . and (and (prim1 x0 48ef8..) (prim1 x1 48ef8..)) (∀ x2 . prim1 x2 (1ad11.. 48ef8.. (4ae4a.. 4a7ef..))0a59d.. x2 x00a59d.. x2 x1x2 = 4ae4a.. 4a7ef..)
Param 616bf.. : ιιι
Definition fc3b3.. := λ x0 x1 x2 . and (and (and (prim1 x0 48ef8..) (prim1 x1 48ef8..)) (prim1 x2 48ef8..)) (or (∀ x3 : ο . (∀ x4 . and (prim1 x4 48ef8..) (616bf.. x0 (14149.. x4 x2) = x1)x3)x3) (∀ x3 : ο . (∀ x4 . and (prim1 x4 48ef8..) (616bf.. x1 (14149.. x4 x2) = x0)x3)x3))
Param nat_primrec : ι(ιιι) → ιι
Definition f6049.. := λ x0 . nat_primrec (4ae4a.. 4a7ef..) (λ x1 . 14149.. x0)
Definition 8d0f2.. := λ x0 . and (prim1 x0 48ef8..) (∀ x1 : ο . (∀ x2 . and (prim1 x2 48ef8..) (x0 = 14149.. (4ae4a.. (4ae4a.. 4a7ef..)) x2)x1)x1)
Definition b2df9.. := λ x0 . and (prim1 x0 48ef8..) (∀ x1 . prim1 x1 48ef8..x0 = 14149.. (4ae4a.. (4ae4a.. 4a7ef..)) x1∀ x2 : ο . x2)
Definition 2f282.. := nat_primrec (4ae4a.. 4a7ef..) (λ x0 . 14149.. (4ae4a.. x0))
Param f482f.. : ιιι
Param 0fc90.. : ι(ιι) → ι
Param If_i : οιιι
Definition 455bd.. := λ x0 . f482f.. (nat_primrec (0fc90.. 48ef8.. (λ x1 . If_i (x1 = 4a7ef..) (4ae4a.. 4a7ef..) 4a7ef..)) (λ x1 x2 . 0fc90.. 48ef8.. (λ x3 . If_i (x3 = 4a7ef..) (4ae4a.. 4a7ef..) (616bf.. (f482f.. x2 (prim3 x3)) (f482f.. x2 x3)))) x0)
Param 1216a.. : ι(ιο) → ι
Definition d091d.. := λ x0 . prim0 (λ x1 . and (prim1 x1 48ef8..) (c2e41.. x1 (1216a.. (4ae4a.. x0) (λ x2 . and (prim1 4a7ef.. x2) (2a940.. x2 x0)))))
Param 569d0.. : ιιι
Param e6316.. : ιιι
Param bc82c.. : ιιι
Param f4dc0.. : ιι
Definition 5c14e.. := λ x0 x1 . 569d0.. (2f282.. x0) (e6316.. (2f282.. (bc82c.. x0 (f4dc0.. x1))) (2f282.. x1))
Param a470d.. : ι
Definition 36be8.. := λ x0 x1 . and (and (prim1 x0 a470d..) (prim1 x1 a470d..)) (∀ x2 : ο . (∀ x3 . and (prim1 x3 a470d..) (e6316.. x0 x3 = x1)x2)x2)
Definition ff71c.. := λ x0 x1 x2 . and (and (and (prim1 x0 a470d..) (prim1 x1 a470d..)) (prim1 x2 (1ad11.. 48ef8.. (4ae4a.. 4a7ef..)))) (36be8.. (bc82c.. x0 (f4dc0.. x1)) x2)
Definition 51e8c.. := λ x0 x1 . and (and (prim1 x0 a470d..) (prim1 x1 a470d..)) (∀ x2 . prim1 x2 (1ad11.. 48ef8.. (4ae4a.. 4a7ef..))36be8.. x2 x036be8.. x2 x1x2 = 4ae4a.. 4a7ef..)
Definition 62b6b.. := λ x0 . nat_primrec (4ae4a.. 4a7ef..) (λ x1 . e6316.. x0)
Param explicit_Nats : ιι(ιι) → ο
Param explicit_Nats_primrec : ιι(ιι) → ι(ιιι) → ιι
Param explicit_Nats_one_plus : ιι(ιι) → ιιι
Param explicit_Nats_one_plus : ιι(ιι) → ιιι
Definition explicit_Nats_one_mult_alt := λ x0 x1 . λ x2 : ι → ι . λ x3 . explicit_Nats_primrec x0 x1 x2 x3 (λ x4 . explicit_Nats_one_plus x0 x1 x2 x3)
Definition explicit_Nats_lt := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 . and (and (prim1 x3 x0) (prim1 x4 x0)) (∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (explicit_Nats_one_plus x0 x1 x2 x6 x3 = x4)x5)x5)
Definition 3db9b.. := λ x0 x1 . λ x2 : ι → ι . λ x3 . and (prim1 x3 x0) (∀ x4 . prim1 x4 x0explicit_Nats_lt x0 x1 x2 x4 x3or (x4 = x1) (x4 = x3))
Definition 340be.. := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 . and (and (prim1 x3 x0) (prim1 x4 x0)) (∀ x5 . prim1 x5 x0explicit_Nats_lt x0 x1 x2 x5 x3explicit_Nats_lt x0 x1 x2 x5 x4x5 = 4ae4a.. 4a7ef..)
Definition 12b21.. := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 x5 . and (and (and (prim1 x3 x0) (prim1 x4 x0)) (prim1 x5 x0)) (or (or (x3 = x4) (∀ x6 : ο . (∀ x7 . and (prim1 x7 x0) (explicit_Nats_one_plus x0 x1 x2 x3 (explicit_Nats_one_plus x0 x1 x2 x7 x5) = x4)x6)x6)) (∀ x6 : ο . (∀ x7 . and (prim1 x7 x0) (explicit_Nats_one_plus x0 x1 x2 x4 (explicit_Nats_one_plus x0 x1 x2 x7 x5) = x3)x6)x6))
Definition explicit_Nats_one_lt := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 . and (and (prim1 x3 x0) (prim1 x4 x0)) (∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (explicit_Nats_one_plus x0 x1 x2 x3 x6 = x4)x5)x5)
Definition explicit_Nats_one_le := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 . and (and (prim1 x3 x0) (prim1 x4 x0)) (or (x3 = x4) (∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (explicit_Nats_one_plus x0 x1 x2 x3 x6 = x4)x5)x5))
Definition 09583.. := λ x0 x1 . λ x2 : ι → ι . λ x3 . and (prim1 x3 x0) (∀ x4 : ο . (∀ x5 . and (prim1 x5 x0) (x3 = explicit_Nats_one_plus x0 x1 x2 (x2 x1) x5)x4)x4)
Definition bf748.. := λ x0 x1 . λ x2 : ι → ι . λ x3 . and (prim1 x3 x0) (∀ x4 . prim1 x4 x0x3 = explicit_Nats_one_plus x0 x1 x2 (x2 x1) x4∀ x5 : ο . x5)
Definition 900a2.. := λ x0 x1 . λ x2 : ι → ι . explicit_Nats_primrec x0 x1 x2 x1 (λ x3 x4 . If_i (and (x3 = x1∀ x5 : ο . x5) (340be.. x0 x1 x2 x3 x3)) (x2 x4) x4)

previous assets