current assets |
---|
c8741../dda07.. bday: 31450 doc published by Pr4zB..Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param ordsuccordsucc : ι → ιDefinition u1 := 1Definition u2 := ordsucc u1Definition u3 := ordsucc u2Definition u4 := ordsucc u3Definition u5 := ordsucc u4Definition u6 := ordsucc u5Definition u7 := ordsucc u6Definition u8 := ordsucc u7Definition u9 := ordsucc u8Definition u10 := ordsucc u9Definition u11 := ordsucc u10Definition u12 := ordsucc u11Definition u13 := ordsucc u12Definition u14 := ordsucc u13Definition u15 := ordsucc u14Definition u16 := ordsucc u15Definition u17 := ordsucc u16Param atleastpatleastp : ι → ι → οDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition u18 := ordsucc u17Definition u19 := ordsucc u18Definition u20 := ordsucc u19Definition u21 := ordsucc u20Definition u22 := ordsucc u21Definition 94591.. := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x3 x2) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2 x2 x3 x3 x3 x2) (x1 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3) (x1 x3 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x3 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x3 x3 x2 x2 x2 x3) (x1 x3 x3 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x2 x2) (x1 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x3 x2 x2)Param 55574.. : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ιDefinition 0aea9.. := λ x0 x1 . x0 ∈ u22 ⟶ x1 ∈ u22 ⟶ 94591.. (55574.. x0) (55574.. x1) = λ x3 x4 . x3Param ordinalordinal : ι → οParam nat_pnat_p : ι → οParam equipequip : ι → ι → οKnown 2ec5a.. : ∀ x0 . nat_p x0 ⟶ ∀ x1 . atleastp (ordsucc x0) x1 ⟶ (∀ x2 . x2 ∈ x1 ⟶ ordinal x2) ⟶ ∀ x2 : ο . (∀ x3 x4 . equip x0 x3 ⟶ x4 ∈ x1 ⟶ x3 ⊆ x1 ⟶ x3 ⊆ x4 ⟶ x2) ⟶ x2Known nat_4nat_4 : nat_p 4Param binunionbinunion : ι → ι → ιParam SingSing : ι → ιKnown be1cd.. : ∀ x0 . nat_p x0 ⟶ ∀ x1 . equip (ordsucc x0) x1 ⟶ (∀ x2 . x2 ∈ x1 ⟶ ordinal x2) ⟶ ∀ x2 : ο . (∀ x3 x4 . equip x0 x3 ⟶ x4 ∈ x1 ⟶ x3 ⊆ x1 ⟶ x3 ⊆ x4 ⟶ x1 = binunion x3 (Sing x4) ⟶ x2) ⟶ x2Known nat_3nat_3 : nat_p 3Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known 865bf.. : ∀ x0 . atleastp u3 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ ordinal x1) ⟶ ∀ x1 : ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 ∈ x3 ⟶ x3 ∈ x4 ⟶ x1) ⟶ x1Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1 ⟶ atleastp x0 x1Definition 00974.. := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x2) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x3) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x4) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x5) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x6) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x7) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x8) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x9) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x10) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x11) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x12) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x13) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x14) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x15) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x16) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x17) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x18) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x19) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x20) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x21) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x22) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x23) ⟶ x1 x0Param setminussetminus : ι → ι → ιKnown 4fd0a.. : ∀ x0 . x0 ∈ setminus u17 u12 ⟶ ∀ x1 : ι → ο . x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 u16 ⟶ x1 x0Known setminusIsetminusI : ∀ x0 x1 x2 . x2 ∈ x0 ⟶ nIn x2 x1 ⟶ x2 ∈ setminus x0 x1Param TwoRamseyGraph_3_6_17 : ι → ι → οKnown 9cadc.. : ∀ x0 . x0 ⊆ u12 ⟶ atleastp u5 x0 ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (TwoRamseyGraph_3_6_17 x1 x2))Param setsumsetsum : ι → ι → ιKnown equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1 ⟶ equip x1 x2 ⟶ equip x0 x2Param add_natadd_nat : ι → ι → ιKnown 893fe.. : add_nat u4 u1 = u5Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0 ⟶ nat_p x1 ⟶ equip x0 x2 ⟶ equip x1 x3 ⟶ equip (add_nat x0 x1) (setsum x2 x3)Known nat_1nat_1 : nat_p 1Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1 ⟶ equip x1 x0Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1Known d778e.. : ∀ x0 x1 x2 x3 . equip x0 x2 ⟶ equip x1 x3 ⟶ (∀ x4 . x4 ∈ x0 ⟶ nIn x4 x1) ⟶ equip (binunion x0 x1) (setsum x2 x3)Known equip_refequip_ref : ∀ x0 . equip x0 x0Known In_irrefIn_irref : ∀ x0 . nIn x0 x0Known SingESingE : ∀ x0 x1 . x1 ∈ Sing x0 ⟶ x1 = x0Known a0edc.. : ∀ x0 . x0 ∈ u17 ⟶ ∀ x1 . x1 ∈ u17 ⟶ TwoRamseyGraph_3_6_17 x0 x1 ⟶ 0aea9.. x0 x1Known 2d2af.. : u12 ⊆ u17Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Known binunionEbinunionE : ∀ x0 x1 x2 . x2 ∈ binunion x0 x1 ⟶ or (x2 ∈ x0) (x2 ∈ x1)Known nat_transnat_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ x1 ⊆ x0Known nat_12nat_12 : nat_p u12Known 27661.. : ∀ x0 . x0 ∈ setminus u12 u10 ⟶ ∀ x1 : ι → ο . x1 u10 ⟶ x1 u11 ⟶ x1 x0Known ordsuccEordsuccE : ∀ x0 x1 . x1 ∈ ordsucc x0 ⟶ or (x1 ∈ x0) (x1 = x0)Known c8243.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ 94591.. x0 x1 = λ x3 x4 . x3Known 89d98.. : 55574.. u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x11Known 76683.. : 55574.. u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x12Known 2ab0d.. : 55574.. u12 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x13Known fc2d4.. : ∀ x0 . x0 ∈ setminus u13 u10 ⟶ ∀ x1 : ι → ο . x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 x0Known d1edb.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ 94591.. x0 x1 = λ x3 x4 . x3Known 0b155.. : 55574.. u13 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x14Known 98cac.. : ∀ x0 . x0 ∈ setminus u14 u10 ⟶ ∀ x1 : ι → ο . x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 x0Known 38fc2.. : 55574.. u14 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x15Known 7676f.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ 94591.. x0 x1 = λ x3 x4 . x3Known 332b1.. : ∀ x0 . x0 ∈ setminus u15 u10 ⟶ ∀ x1 : ι → ο . x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 x0Known 134b9.. : 55574.. u15 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x16Known be4bb.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ 94591.. x0 x1 = λ x3 x4 . x3Known 16203.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ 94591.. x0 x1 = λ x3 x4 . x3Known b72e6.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ 94591.. x0 x1 = λ x3 x4 . x3Known 1aedf.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ 94591.. x0 x1 = λ x3 x4 . x3Known 853d4.. : ∀ x0 . x0 ∈ setminus u16 u10 ⟶ ∀ x1 : ι → ο . x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 x0Known 7f524.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x19) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x19) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4) ⟶ (94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4) ⟶ 94591.. x0 x1 = λ x3 x4 . x3Known b8157.. : 55574.. u16 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x17Known 44418.. : ∀ x0 . x0 ∈ u10 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 x0Known EmptyEEmptyE : ∀ x0 . nIn x0 0Known cases_1cases_1 : ∀ x0 . x0 ∈ u1 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 x0Known cases_2cases_2 : ∀ x0 . x0 ∈ u2 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 x0Known cases_3cases_3 : ∀ x0 . x0 ∈ u3 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 x0Known 7410a.. : 55574.. 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x1Known fa851.. : 55574.. u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x3Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0 ∈ x1 ⟶ x1 ∈ x0 ⟶ FalseKnown aafc6.. : 55574.. u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x2Known 9379b.. : 55574.. u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x4Known 5f4d4.. : 55574.. u4 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x5Known bb555.. : 55574.. u18 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x19Known b535d.. : 55574.. u5 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x6Known 54789.. : 55574.. u20 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x21Known 8ef56.. : 55574.. u6 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x7Known 151b0.. : 55574.. u7 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x8Known 9e99f.. : 55574.. u8 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x9Known 896c4.. : 55574.. u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x10Known 18048.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x0 ⟶ 00974.. x1 ⟶ or (94591.. x0 x1 = λ x3 x4 . x3) (94591.. x0 x1 = λ x3 x4 . x4)Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known d91eb.. : ∀ x0 . x0 ∈ u22 ⟶ 00974.. (55574.. x0)Known In_no3cycleIn_no3cycle : ∀ x0 x1 x2 . x0 ∈ x1 ⟶ x1 ∈ x2 ⟶ x2 ∈ x0 ⟶ FalseKnown In_no4cycleIn_no4cycle : ∀ x0 x1 x2 x3 . x0 ∈ x1 ⟶ x1 ∈ x2 ⟶ x2 ∈ x3 ⟶ x3 ∈ x0 ⟶ FalseKnown e46ec.. : u17 ⊆ u22Known 86222.. : ∀ x0 . x0 ∈ setminus u10 u6 ⟶ ∀ x1 : ι → ο . x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 x0Known 620a1.. : ∀ x0 . x0 ⊆ u6 ⟶ atleastp u4 x0 ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (0aea9.. x1 x2))Known nat_6nat_6 : nat_p 6Known 480b2.. : add_nat u3 u1 = u4Known Subq_refSubq_ref : ∀ x0 . x0 ⊆ x0Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0 ⟶ ordinal x0Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ nat_p x1Known nat_17nat_17 : nat_p u17Theorem c3170.. : ∀ x0 . x0 ⊆ u17 ⟶ atleastp u5 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (0aea9.. x1 u18)) ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (0aea9.. x1 u20)) ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (0aea9.. x1 x2)) (proof)Known nat_5nat_5 : nat_p 5Known dcb62.. : ∀ x0 . x0 ∈ setminus u22 u17 ⟶ ∀ x1 : ι → ο . x1 u17 ⟶ x1 u18 ⟶ x1 u19 ⟶ x1 u20 ⟶ x1 u21 ⟶ x1 x0Known 5f797.. : 0aea9.. u17 u18Known 66f20.. : ∀ x0 . x0 ∈ u17 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 u16 ⟶ x1 x0Known 46814.. : 0 ∈ 12Known 2b77d.. : 1 ∈ 12Known 7c2ac.. : 2 ∈ 12Known 2f583.. : 3 ∈ 12Known e4fc0.. : 4 ∈ 12Known 04716.. : 5 ∈ 12Known fbe39.. : 6 ∈ 12Known 35d73.. : 7 ∈ 12Known 5196c.. : 8 ∈ 12Known 4fa36.. : 9 ∈ 12Known 42552.. : 10 ∈ 12Known fee2e.. : 11 ∈ 12Known a1a10.. : u12 ∈ u17Known 1435b.. : 55574.. u19 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x20Known 7315d.. : u13 ∈ u17Known 35e01.. : u14 ∈ u17Known 31b8d.. : u15 ∈ u17Known dfaf3.. : u16 ∈ u17Known e86b0.. : 55574.. u17 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x18Known 6eb03.. : 0aea9.. u17 u20Known 50d90.. : ∀ x0 . x0 ⊆ u16 ⟶ atleastp u5 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (0aea9.. x1 u17)) ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (0aea9.. x1 u21)) ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (0aea9.. x1 x2))Known 667cd.. : 55574.. u21 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x22Known c1d56.. : u17 ⊆ u21Known e0489.. : u17 ∈ u18Known 4a27e.. : 0aea9.. u18 u19Known 2d95b.. : u17 ⊆ u20Known 42954.. : u17 = u20 ⟶ ∀ x0 : ο . x0Known 994f0.. : 0aea9.. u18 u21Known 25029.. : u18 ∈ u19Known f355c.. : 0aea9.. u19 u20Known 82d29.. : ∀ x0 . x0 ⊆ u18 ⟶ atleastp u5 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (0aea9.. x1 u19)) ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (0aea9.. x1 u21)) ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (0aea9.. x1 x2))Known edc13.. : u18 = u19 ⟶ ∀ x0 : ο . x0Known ordsuccI1ordsuccI1 : ∀ x0 . x0 ⊆ ordsucc x0Known 9ea5b.. : u19 ∈ u20Known 11aea.. : 0aea9.. u20 u21Known c955e.. : u20 ∈ u21Known 5922f.. : ∀ x0 . x0 ⊆ u17 ⟶ atleastp u6 x0 ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (TwoRamseyGraph_3_6_17 x1 x2))Known 561b1.. : add_nat u5 u1 = u6Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0 ⊆ x1 ⟶ x1 ⊆ x2 ⟶ x0 ⊆ x2Known daa33.. : nat_p u22Theorem 8432f.. : ∀ x0 . x0 ⊆ u22 ⟶ atleastp u7 x0 ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (0aea9.. x1 x2)) (proof)Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition TwoRamseyProp_atleastp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5 ⟶ x3 x5 x4) ⟶ or (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (atleastp x0 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ x3 x6 x7)) ⟶ x4) ⟶ x4) (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (atleastp x1 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ not (x3 x6 x7))) ⟶ x4) ⟶ x4)Known ebffb.. : ∀ x0 x1 . 0aea9.. x0 x1 ⟶ 0aea9.. x1 x0Known 907a2.. : ∀ x0 . x0 ⊆ u22 ⟶ atleastp u3 x0 ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ 0aea9.. x1 x2)Theorem 3738e.. : not (TwoRamseyProp_atleastp u3 u7 u22) (proof)Param TwoRamseyPropTwoRamseyProp : ι → ι → ι → οKnown TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4 ⟶ atleastp x1 x0 ⟶ atleastp x3 x2 ⟶ TwoRamseyProp_atleastp x1 x3 x4Known atleastp_ref : ∀ x0 . atleastp x0 x0Theorem not_TwoRamseyProp_3_7_22not_TwoRamseyProp_3_7_22 : not (TwoRamseyProp 3 7 22) (proof)
|
|