Search for blocks/addresses/...
Proofgold Asset
asset id
dda074e8a980e00d88ba90dee4269bb65a4e5f4ad98601775515d5d9c9b9e17a
asset hash
c8741c91dc83677ec6fe159e0e5442e494ee3b2805ce54a36ce83db69dbd9b2d
bday / block
31450
tx
33f25..
preasset
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
u18
:=
ordsucc
u17
Definition
u19
:=
ordsucc
u18
Definition
u20
:=
ordsucc
u19
Definition
u21
:=
ordsucc
u20
Definition
u22
:=
ordsucc
u21
Definition
94591..
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x3
)
(
x1
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x2
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x3
x3
x2
)
(
x1
x3
x2
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x2
x2
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x2
x2
x2
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x2
x3
x2
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x2
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x3
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
)
(
x1
x3
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x3
x2
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x3
x3
x2
x2
x2
x3
)
(
x1
x3
x3
x3
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
x2
x2
x2
)
(
x1
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x3
x2
x3
x2
x2
)
Param
55574..
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Definition
0aea9..
:=
λ x0 x1 .
x0
∈
u22
⟶
x1
∈
u22
⟶
94591..
(
55574..
x0
)
(
55574..
x1
)
=
λ x3 x4 .
x3
Param
ordinal
ordinal
:
ι
→
ο
Param
nat_p
nat_p
:
ι
→
ο
Param
equip
equip
:
ι
→
ι
→
ο
Known
2ec5a..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
atleastp
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x2
)
⟶
x2
Known
nat_4
nat_4
:
nat_p
4
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
be1cd..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x1
=
binunion
x3
(
Sing
x4
)
⟶
x2
)
⟶
x2
Known
nat_3
nat_3
:
nat_p
3
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
865bf..
:
∀ x0 .
atleastp
u3
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
∈
x3
⟶
x3
∈
x4
⟶
x1
)
⟶
x1
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Definition
00974..
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x14
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x15
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x16
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x17
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x18
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x19
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x20
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x21
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x22
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x23
)
⟶
x1
x0
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
4fd0a..
:
∀ x0 .
x0
∈
setminus
u17
u12
⟶
∀ x1 :
ι → ο
.
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
x0
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Param
TwoRamseyGraph_3_6_17
:
ι
→
ι
→
ο
Known
9cadc..
:
∀ x0 .
x0
⊆
u12
⟶
atleastp
u5
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
893fe..
:
add_nat
u4
u1
=
u5
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_1
nat_1
:
nat_p
1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
5169f..
equip_Sing_1
:
∀ x0 .
equip
(
Sing
x0
)
u1
Known
d778e..
:
∀ x0 x1 x2 x3 .
equip
x0
x2
⟶
equip
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
equip
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
a0edc..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 .
x1
∈
u17
⟶
TwoRamseyGraph_3_6_17
x0
x1
⟶
0aea9..
x0
x1
Known
2d2af..
:
u12
⊆
u17
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
nat_12
nat_12
:
nat_p
u12
Known
27661..
:
∀ x0 .
x0
∈
setminus
u12
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
x0
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
c8243..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x13
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x14
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x13
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x14
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
94591..
x0
x1
=
λ x3 x4 .
x3
Known
89d98..
:
55574..
u10
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x11
Known
76683..
:
55574..
u11
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x12
Known
2ab0d..
:
55574..
u12
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x13
Known
fc2d4..
:
∀ x0 .
x0
∈
setminus
u13
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
x0
Known
d1edb..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x14
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x14
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
94591..
x0
x1
=
λ x3 x4 .
x3
Known
0b155..
:
55574..
u13
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x14
Known
98cac..
:
∀ x0 .
x0
∈
setminus
u14
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
x0
Known
38fc2..
:
55574..
u14
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x15
Known
7676f..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
94591..
x0
x1
=
λ x3 x4 .
x3
Known
332b1..
:
∀ x0 .
x0
∈
setminus
u15
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
x0
Known
134b9..
:
55574..
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x16
Known
be4bb..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x13
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x13
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
94591..
x0
x1
=
λ x3 x4 .
x3
Known
16203..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
94591..
x0
x1
=
λ x3 x4 .
x3
Known
b72e6..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
94591..
x0
x1
=
λ x3 x4 .
x3
Known
1aedf..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
94591..
x0
x1
=
λ x3 x4 .
x3
Known
853d4..
:
∀ x0 .
x0
∈
setminus
u16
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
x0
Known
7f524..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x13
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x14
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x19
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x13
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x14
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x19
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x21
)
=
λ x3 x4 .
x4
)
⟶
(
94591..
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
x23
)
=
λ x3 x4 .
x4
)
⟶
94591..
x0
x1
=
λ x3 x4 .
x3
Known
b8157..
:
55574..
u16
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x17
Known
44418..
:
∀ x0 .
x0
∈
u10
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
x0
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
u1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
u2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
x0
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
u3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
x0
Known
7410a..
:
55574..
0
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x1
Known
fa851..
:
55574..
u2
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x3
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
aafc6..
:
55574..
u1
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x2
Known
9379b..
:
55574..
u3
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x4
Known
5f4d4..
:
55574..
u4
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x5
Known
bb555..
:
55574..
u18
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x19
Known
b535d..
:
55574..
u5
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x6
Known
54789..
:
55574..
u20
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x21
Known
8ef56..
:
55574..
u6
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x7
Known
151b0..
:
55574..
u7
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x8
Known
9e99f..
:
55574..
u8
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x9
Known
896c4..
:
55574..
u9
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x10
Known
18048..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
00974..
x0
⟶
00974..
x1
⟶
or
(
94591..
x0
x1
=
λ x3 x4 .
x3
)
(
94591..
x0
x1
=
λ x3 x4 .
x4
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
d91eb..
:
∀ x0 .
x0
∈
u22
⟶
00974..
(
55574..
x0
)
Known
In_no3cycle
In_no3cycle
:
∀ x0 x1 x2 .
x0
∈
x1
⟶
x1
∈
x2
⟶
x2
∈
x0
⟶
False
Known
In_no4cycle
In_no4cycle
:
∀ x0 x1 x2 x3 .
x0
∈
x1
⟶
x1
∈
x2
⟶
x2
∈
x3
⟶
x3
∈
x0
⟶
False
Known
e46ec..
:
u17
⊆
u22
Known
86222..
:
∀ x0 .
x0
∈
setminus
u10
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
x0
Known
620a1..
:
∀ x0 .
x0
⊆
u6
⟶
atleastp
u4
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
Known
nat_6
nat_6
:
nat_p
6
Known
480b2..
:
add_nat
u3
u1
=
u4
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_17
nat_17
:
nat_p
u17
Theorem
c3170..
:
∀ x0 .
x0
⊆
u17
⟶
atleastp
u5
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u18
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u20
)
)
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
(proof)
Known
nat_5
nat_5
:
nat_p
5
Known
dcb62..
:
∀ x0 .
x0
∈
setminus
u22
u17
⟶
∀ x1 :
ι → ο
.
x1
u17
⟶
x1
u18
⟶
x1
u19
⟶
x1
u20
⟶
x1
u21
⟶
x1
x0
Known
5f797..
:
0aea9..
u17
u18
Known
66f20..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
x0
Known
46814..
:
0
∈
12
Known
2b77d..
:
1
∈
12
Known
7c2ac..
:
2
∈
12
Known
2f583..
:
3
∈
12
Known
e4fc0..
:
4
∈
12
Known
04716..
:
5
∈
12
Known
fbe39..
:
6
∈
12
Known
35d73..
:
7
∈
12
Known
5196c..
:
8
∈
12
Known
4fa36..
:
9
∈
12
Known
42552..
:
10
∈
12
Known
fee2e..
:
11
∈
12
Known
a1a10..
:
u12
∈
u17
Known
1435b..
:
55574..
u19
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x20
Known
7315d..
:
u13
∈
u17
Known
35e01..
:
u14
∈
u17
Known
31b8d..
:
u15
∈
u17
Known
dfaf3..
:
u16
∈
u17
Known
e86b0..
:
55574..
u17
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x18
Known
6eb03..
:
0aea9..
u17
u20
Known
50d90..
:
∀ x0 .
x0
⊆
u16
⟶
atleastp
u5
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u17
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u21
)
)
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
Known
667cd..
:
55574..
u21
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x22
Known
c1d56..
:
u17
⊆
u21
Known
e0489..
:
u17
∈
u18
Known
4a27e..
:
0aea9..
u18
u19
Known
2d95b..
:
u17
⊆
u20
Known
42954..
:
u17
=
u20
⟶
∀ x0 : ο .
x0
Known
994f0..
:
0aea9..
u18
u21
Known
25029..
:
u18
∈
u19
Known
f355c..
:
0aea9..
u19
u20
Known
82d29..
:
∀ x0 .
x0
⊆
u18
⟶
atleastp
u5
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u19
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u21
)
)
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
Known
edc13..
:
u18
=
u19
⟶
∀ x0 : ο .
x0
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
9ea5b..
:
u19
∈
u20
Known
11aea..
:
0aea9..
u20
u21
Known
c955e..
:
u20
∈
u21
Known
5922f..
:
∀ x0 .
x0
⊆
u17
⟶
atleastp
u6
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
Known
561b1..
:
add_nat
u5
u1
=
u6
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
daa33..
:
nat_p
u22
Theorem
8432f..
:
∀ x0 .
x0
⊆
u22
⟶
atleastp
u7
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
TwoRamseyProp_atleastp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Known
ebffb..
:
∀ x0 x1 .
0aea9..
x0
x1
⟶
0aea9..
x1
x0
Known
907a2..
:
∀ x0 .
x0
⊆
u22
⟶
atleastp
u3
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
0aea9..
x1
x2
)
Theorem
3738e..
:
not
(
TwoRamseyProp_atleastp
u3
u7
u22
)
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Theorem
not_TwoRamseyProp_3_7_22
not_TwoRamseyProp_3_7_22
:
not
(
TwoRamseyProp
3
7
22
)
(proof)