current assets |
---|
47dbb../079a5.. bday: 4897 doc published by Pr6Pc..Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known In_indIn_ind : ∀ x0 : ι → ο . (∀ x1 . (∀ x2 . x2 ∈ x1 ⟶ x0 x2) ⟶ x0 x1) ⟶ ∀ x1 . x0 x1Known In_irrefIn_irref : ∀ x0 . nIn x0 x0Theorem 258d1.. : ∀ x0 x1 x2 . x0 ∈ x1 ⟶ x1 ∈ x2 ⟶ nIn x2 x0 (proof)Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Known Eps_i_axEps_i_ax : ∀ x0 : ι → ο . ∀ x1 . x0 x1 ⟶ x0 (prim0 x0)Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Theorem Eps_i_set_REps_i_set_R : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ x0 ⟶ x1 x2 ⟶ and (prim0 (λ x3 . and (x3 ∈ x0) (x1 x3)) ∈ x0) (x1 (prim0 (λ x3 . and (x3 ∈ x0) (x1 x3)))) (proof)Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Definition If_iIf_i := λ x0 : ο . λ x1 x2 . prim0 (λ x3 . or (and x0 (x3 = x1)) (and (not x0) (x3 = x2)))Known xmxm : ∀ x0 : ο . or x0 (not x0)Known orILorIL : ∀ x0 x1 : ο . x0 ⟶ or x0 x1Known orIRorIR : ∀ x0 x1 : ο . x1 ⟶ or x0 x1Known If_i_correctIf_i_correct : ∀ x0 : ο . ∀ x1 x2 . or (and x0 (If_i x0 x1 x2 = x1)) (and (not x0) (If_i x0 x1 x2 = x2))Known andELandEL : ∀ x0 x1 : ο . and x0 x1 ⟶ x0Known andERandER : ∀ x0 x1 : ο . and x0 x1 ⟶ x1Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0 ⟶ If_i x0 x1 x2 = x2Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0 ⟶ If_i x0 x1 x2 = x1Known If_i_orIf_i_or : ∀ x0 : ο . ∀ x1 x2 . or (If_i x0 x1 x2 = x1) (If_i x0 x1 x2 = x2)Known If_i_etaIf_i_eta : ∀ x0 : ο . ∀ x1 . If_i x0 x1 x1 = x1Theorem exandE_iiexandE_ii : ∀ x0 x1 : (ι → ι) → ο . (∀ x2 : ο . (∀ x3 : ι → ι . and (x0 x3) (x1 x3) ⟶ x2) ⟶ x2) ⟶ ∀ x2 : ο . (∀ x3 : ι → ι . x0 x3 ⟶ x1 x3 ⟶ x2) ⟶ x2 (proof)Theorem exandE_iiiexandE_iii : ∀ x0 x1 : (ι → ι → ι) → ο . (∀ x2 : ο . (∀ x3 : ι → ι → ι . and (x0 x3) (x1 x3) ⟶ x2) ⟶ x2) ⟶ ∀ x2 : ο . (∀ x3 : ι → ι → ι . x0 x3 ⟶ x1 x3 ⟶ x2) ⟶ x2 (proof)Theorem exandE_iiiiexandE_iiii : ∀ x0 x1 : (ι → ι → ι → ι) → ο . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . and (x0 x3) (x1 x3) ⟶ x2) ⟶ x2) ⟶ ∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . x0 x3 ⟶ x1 x3 ⟶ x2) ⟶ x2 (proof)Theorem exandE_iioexandE_iio : ∀ x0 x1 : (ι → ι → ο) → ο . (∀ x2 : ο . (∀ x3 : ι → ι → ο . and (x0 x3) (x1 x3) ⟶ x2) ⟶ x2) ⟶ ∀ x2 : ο . (∀ x3 : ι → ι → ο . x0 x3 ⟶ x1 x3 ⟶ x2) ⟶ x2 (proof)Theorem exandE_iiioexandE_iiio : ∀ x0 x1 : (ι → ι → ι → ο) → ο . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ο . and (x0 x3) (x1 x3) ⟶ x2) ⟶ x2) ⟶ ∀ x2 : ο . (∀ x3 : ι → ι → ι → ο . x0 x3 ⟶ x1 x3 ⟶ x2) ⟶ x2 (proof)Definition Descr_iiDescr_ii := λ x0 : (ι → ι) → ο . λ x1 . prim0 (λ x2 . ∀ x3 : ι → ι . x0 x3 ⟶ x3 x1 = x2)Theorem Descr_ii_propDescr_ii_prop : ∀ x0 : (ι → ι) → ο . (∀ x1 : ο . (∀ x2 : ι → ι . x0 x2 ⟶ x1) ⟶ x1) ⟶ (∀ x1 x2 : ι → ι . x0 x1 ⟶ x0 x2 ⟶ x1 = x2) ⟶ x0 (Descr_ii x0) (proof)Definition Descr_iiiDescr_iii := λ x0 : (ι → ι → ι) → ο . λ x1 x2 . prim0 (λ x3 . ∀ x4 : ι → ι → ι . x0 x4 ⟶ x4 x1 x2 = x3)Theorem Descr_iii_propDescr_iii_prop : ∀ x0 : (ι → ι → ι) → ο . (∀ x1 : ο . (∀ x2 : ι → ι → ι . x0 x2 ⟶ x1) ⟶ x1) ⟶ (∀ x1 x2 : ι → ι → ι . x0 x1 ⟶ x0 x2 ⟶ x1 = x2) ⟶ x0 (Descr_iii x0) (proof)Definition Descr_iioDescr_iio := λ x0 : (ι → ι → ο) → ο . λ x1 x2 . ∀ x3 : ι → ι → ο . x0 x3 ⟶ x3 x1 x2Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0 ⟶ x1) ⟶ (x1 ⟶ x0) ⟶ x0 = x1Theorem Descr_iio_propDescr_iio_prop : ∀ x0 : (ι → ι → ο) → ο . (∀ x1 : ο . (∀ x2 : ι → ι → ο . x0 x2 ⟶ x1) ⟶ x1) ⟶ (∀ x1 x2 : ι → ι → ο . x0 x1 ⟶ x0 x2 ⟶ x1 = x2) ⟶ x0 (Descr_iio x0) (proof)Definition Descr_Vo1Descr_Vo1 := λ x0 : (ι → ο) → ο . λ x1 . ∀ x2 : ι → ο . x0 x2 ⟶ x2 x1Theorem Descr_Vo1_propDescr_Vo1_prop : ∀ x0 : (ι → ο) → ο . (∀ x1 : ο . (∀ x2 : ι → ο . x0 x2 ⟶ x1) ⟶ x1) ⟶ (∀ x1 x2 : ι → ο . x0 x1 ⟶ x0 x2 ⟶ x1 = x2) ⟶ x0 (Descr_Vo1 x0) (proof)Definition Descr_Vo2Descr_Vo2 := λ x0 : ((ι → ο) → ο) → ο . λ x1 : ι → ο . ∀ x2 : (ι → ο) → ο . x0 x2 ⟶ x2 x1Theorem Descr_Vo2_propDescr_Vo2_prop : ∀ x0 : ((ι → ο) → ο) → ο . (∀ x1 : ο . (∀ x2 : (ι → ο) → ο . x0 x2 ⟶ x1) ⟶ x1) ⟶ (∀ x1 x2 : (ι → ο) → ο . x0 x1 ⟶ x0 x2 ⟶ x1 = x2) ⟶ x0 (Descr_Vo2 x0) (proof)Definition If_iiIf_ii := λ x0 : ο . λ x1 x2 : ι → ι . λ x3 . If_i x0 (x1 x3) (x2 x3)Theorem If_ii_1If_ii_1 : ∀ x0 : ο . ∀ x1 x2 : ι → ι . x0 ⟶ If_ii x0 x1 x2 = x1 (proof)Theorem If_ii_0If_ii_0 : ∀ x0 : ο . ∀ x1 x2 : ι → ι . not x0 ⟶ If_ii x0 x1 x2 = x2 (proof)Definition If_iiiIf_iii := λ x0 : ο . λ x1 x2 : ι → ι → ι . λ x3 x4 . If_i x0 (x1 x3 x4) (x2 x3 x4)Theorem If_iii_1If_iii_1 : ∀ x0 : ο . ∀ x1 x2 : ι → ι → ι . x0 ⟶ If_iii x0 x1 x2 = x1 (proof)Theorem If_iii_0If_iii_0 : ∀ x0 : ο . ∀ x1 x2 : ι → ι → ι . not x0 ⟶ If_iii x0 x1 x2 = x2 (proof)Definition If_Vo1If_Vo1 := λ x0 : ο . λ x1 x2 : ι → ο . λ x3 . and (x0 ⟶ x1 x3) (not x0 ⟶ x2 x3)Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known notEnotE : ∀ x0 : ο . not x0 ⟶ x0 ⟶ FalseTheorem If_Vo1_1If_Vo1_1 : ∀ x0 : ο . ∀ x1 x2 : ι → ο . x0 ⟶ If_Vo1 x0 x1 x2 = x1 (proof)Theorem If_Vo1_0If_Vo1_0 : ∀ x0 : ο . ∀ x1 x2 : ι → ο . not x0 ⟶ If_Vo1 x0 x1 x2 = x2 (proof)Definition If_iioIf_iio := λ x0 : ο . λ x1 x2 : ι → ι → ο . λ x3 x4 . and (x0 ⟶ x1 x3 x4) (not x0 ⟶ x2 x3 x4)Theorem If_iio_1If_iio_1 : ∀ x0 : ο . ∀ x1 x2 : ι → ι → ο . x0 ⟶ If_iio x0 x1 x2 = x1 (proof)Theorem If_iio_0If_iio_0 : ∀ x0 : ο . ∀ x1 x2 : ι → ι → ο . not x0 ⟶ If_iio x0 x1 x2 = x2 (proof)Definition If_Vo2If_Vo2 := λ x0 : ο . λ x1 x2 : (ι → ο) → ο . λ x3 : ι → ο . and (x0 ⟶ x1 x3) (not x0 ⟶ x2 x3)Theorem If_Vo2_1If_Vo2_1 : ∀ x0 : ο . ∀ x1 x2 : (ι → ο) → ο . x0 ⟶ If_Vo2 x0 x1 x2 = x1 (proof)Theorem If_Vo2_0If_Vo2_0 : ∀ x0 : ο . ∀ x1 x2 : (ι → ο) → ο . not x0 ⟶ If_Vo2 x0 x1 x2 = x2 (proof)Definition In_rec_i_GIn_rec_i_G := λ x0 : ι → (ι → ι) → ι . λ x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 . ∀ x5 : ι → ι . (∀ x6 . x6 ∈ x4 ⟶ x3 x6 (x5 x6)) ⟶ x3 x4 (x0 x4 x5)) ⟶ x3 x1 x2Definition In_rec_iIn_rec_i := λ x0 : ι → (ι → ι) → ι . λ x1 . prim0 (In_rec_i_G x0 x1)Theorem In_rec_i_G_cIn_rec_i_G_c : ∀ x0 : ι → (ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 . x3 ∈ x1 ⟶ In_rec_i_G x0 x3 (x2 x3)) ⟶ In_rec_i_G x0 x1 (x0 x1 x2) (proof)Theorem In_rec_i_G_invIn_rec_i_G_inv : ∀ x0 : ι → (ι → ι) → ι . ∀ x1 x2 . In_rec_i_G x0 x1 x2 ⟶ ∀ x3 : ο . (∀ x4 : ι → ι . and (∀ x5 . x5 ∈ x1 ⟶ In_rec_i_G x0 x5 (x4 x5)) (x2 = x0 x1 x4) ⟶ x3) ⟶ x3 (proof)Theorem In_rec_i_G_fIn_rec_i_G_f : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 x2 x3 . In_rec_i_G x0 x1 x2 ⟶ In_rec_i_G x0 x1 x3 ⟶ x2 = x3 (proof)Theorem In_rec_i_G_In_rec_iIn_rec_i_G_In_rec_i : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_i_G x0 x1 (In_rec_i x0 x1) (proof)Theorem In_rec_i_G_In_rec_i_dIn_rec_i_G_In_rec_i_d : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_i_G x0 x1 (x0 x1 (In_rec_i x0)) (proof)Theorem In_rec_i_eqIn_rec_i_eq : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_i x0 x1 = x0 x1 (In_rec_i x0) (proof)Definition In_rec_G_iiIn_rec_G_ii := λ x0 : ι → (ι → ι → ι) → ι → ι . λ x1 . λ x2 : ι → ι . ∀ x3 : ι → (ι → ι) → ο . (∀ x4 . ∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x4 ⟶ x3 x6 (x5 x6)) ⟶ x3 x4 (x0 x4 x5)) ⟶ x3 x1 x2Definition In_rec_iiIn_rec_ii := λ x0 : ι → (ι → ι → ι) → ι → ι . λ x1 . Descr_ii (In_rec_G_ii x0 x1)Theorem In_rec_G_ii_cIn_rec_G_ii_c : ∀ x0 : ι → (ι → ι → ι) → ι → ι . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x1 ⟶ In_rec_G_ii x0 x3 (x2 x3)) ⟶ In_rec_G_ii x0 x1 (x0 x1 x2) (proof)Theorem In_rec_G_ii_invIn_rec_G_ii_inv : ∀ x0 : ι → (ι → ι → ι) → ι → ι . ∀ x1 . ∀ x2 : ι → ι . In_rec_G_ii x0 x1 x2 ⟶ ∀ x3 : ο . (∀ x4 : ι → ι → ι . and (∀ x5 . x5 ∈ x1 ⟶ In_rec_G_ii x0 x5 (x4 x5)) (x2 = x0 x1 x4) ⟶ x3) ⟶ x3 (proof)Theorem In_rec_G_ii_fIn_rec_G_ii_f : ∀ x0 : ι → (ι → ι → ι) → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . ∀ x2 x3 : ι → ι . In_rec_G_ii x0 x1 x2 ⟶ In_rec_G_ii x0 x1 x3 ⟶ x2 = x3 (proof)Theorem In_rec_G_ii_In_rec_iiIn_rec_G_ii_In_rec_ii : ∀ x0 : ι → (ι → ι → ι) → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_G_ii x0 x1 (In_rec_ii x0 x1) (proof)Theorem In_rec_G_ii_In_rec_ii_dIn_rec_G_ii_In_rec_ii_d : ∀ x0 : ι → (ι → ι → ι) → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_G_ii x0 x1 (x0 x1 (In_rec_ii x0)) (proof)Theorem In_rec_ii_eqIn_rec_ii_eq : ∀ x0 : ι → (ι → ι → ι) → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_ii x0 x1 = x0 x1 (In_rec_ii x0) (proof)Definition In_rec_G_iiiIn_rec_G_iii := λ x0 : ι → (ι → ι → ι → ι) → ι → ι → ι . λ x1 . λ x2 : ι → ι → ι . ∀ x3 : ι → (ι → ι → ι) → ο . (∀ x4 . ∀ x5 : ι → ι → ι → ι . (∀ x6 . x6 ∈ x4 ⟶ x3 x6 (x5 x6)) ⟶ x3 x4 (x0 x4 x5)) ⟶ x3 x1 x2Definition In_rec_iiiIn_rec_iii := λ x0 : ι → (ι → ι → ι → ι) → ι → ι → ι . λ x1 . Descr_iii (In_rec_G_iii x0 x1)Theorem In_rec_G_iii_cIn_rec_G_iii_c : ∀ x0 : ι → (ι → ι → ι → ι) → ι → ι → ι . ∀ x1 . ∀ x2 : ι → ι → ι → ι . (∀ x3 . x3 ∈ x1 ⟶ In_rec_G_iii x0 x3 (x2 x3)) ⟶ In_rec_G_iii x0 x1 (x0 x1 x2) (proof)Theorem In_rec_G_iii_invIn_rec_G_iii_inv : ∀ x0 : ι → (ι → ι → ι → ι) → ι → ι → ι . ∀ x1 . ∀ x2 : ι → ι → ι . In_rec_G_iii x0 x1 x2 ⟶ ∀ x3 : ο . (∀ x4 : ι → ι → ι → ι . and (∀ x5 . x5 ∈ x1 ⟶ In_rec_G_iii x0 x5 (x4 x5)) (x2 = x0 x1 x4) ⟶ x3) ⟶ x3 (proof)Theorem In_rec_G_iii_fIn_rec_G_iii_f : ∀ x0 : ι → (ι → ι → ι → ι) → ι → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . ∀ x2 x3 : ι → ι → ι . In_rec_G_iii x0 x1 x2 ⟶ In_rec_G_iii x0 x1 x3 ⟶ x2 = x3 (proof)Theorem In_rec_G_iii_In_rec_iiiIn_rec_G_iii_In_rec_iii : ∀ x0 : ι → (ι → ι → ι → ι) → ι → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_G_iii x0 x1 (In_rec_iii x0 x1) (proof)Theorem In_rec_G_iii_In_rec_iii_dIn_rec_G_iii_In_rec_iii_d : ∀ x0 : ι → (ι → ι → ι → ι) → ι → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_G_iii x0 x1 (x0 x1 (In_rec_iii x0)) (proof)Theorem In_rec_iii_eqIn_rec_iii_eq : ∀ x0 : ι → (ι → ι → ι → ι) → ι → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_iii x0 x1 = x0 x1 (In_rec_iii x0) (proof)Definition 6b023.. := λ x0 : ι → (ι → ι → ι → ο) → ι → ι → ο . λ x1 . λ x2 : ι → ι → ο . ∀ x3 : ι → (ι → ι → ο) → ο . (∀ x4 . ∀ x5 : ι → ι → ι → ο . (∀ x6 . x6 ∈ x4 ⟶ x3 x6 (x5 x6)) ⟶ x3 x4 (x0 x4 x5)) ⟶ x3 x1 x2Definition In_rec_iioIn_rec_iio := λ x0 : ι → (ι → ι → ι → ο) → ι → ι → ο . λ x1 . Descr_iio (6b023.. x0 x1)Theorem 6f12d.. : ∀ x0 : ι → (ι → ι → ι → ο) → ι → ι → ο . ∀ x1 . ∀ x2 : ι → ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ 6b023.. x0 x3 (x2 x3)) ⟶ 6b023.. x0 x1 (x0 x1 x2) (proof)Theorem b0c8e.. : ∀ x0 : ι → (ι → ι → ι → ο) → ι → ι → ο . ∀ x1 . ∀ x2 : ι → ι → ο . 6b023.. x0 x1 x2 ⟶ ∀ x3 : ο . (∀ x4 : ι → ι → ι → ο . and (∀ x5 . x5 ∈ x1 ⟶ 6b023.. x0 x5 (x4 x5)) (x2 = x0 x1 x4) ⟶ x3) ⟶ x3 (proof)Theorem 41db9.. : ∀ x0 : ι → (ι → ι → ι → ο) → ι → ι → ο . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . ∀ x2 x3 : ι → ι → ο . 6b023.. x0 x1 x2 ⟶ 6b023.. x0 x1 x3 ⟶ x2 = x3 (proof)Theorem 409d6.. : ∀ x0 : ι → (ι → ι → ι → ο) → ι → ι → ο . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . 6b023.. x0 x1 (In_rec_iio x0 x1) (proof)Theorem 67223.. : ∀ x0 : ι → (ι → ι → ι → ο) → ι → ι → ο . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . 6b023.. x0 x1 (x0 x1 (In_rec_iio x0)) (proof)Theorem In_rec_iio_eqIn_rec_iio_eq : ∀ x0 : ι → (ι → ι → ι → ο) → ι → ι → ο . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_iio x0 x1 = x0 x1 (In_rec_iio x0) (proof)Definition f6068.. := λ x0 : ι → (ι → ι → ο) → ι → ο . λ x1 . λ x2 : ι → ο . ∀ x3 : ι → (ι → ο) → ο . (∀ x4 . ∀ x5 : ι → ι → ο . (∀ x6 . x6 ∈ x4 ⟶ x3 x6 (x5 x6)) ⟶ x3 x4 (x0 x4 x5)) ⟶ x3 x1 x2Definition In_rec_Vo1In_rec_Vo1 := λ x0 : ι → (ι → ι → ο) → ι → ο . λ x1 . Descr_Vo1 (f6068.. x0 x1)Theorem 0d2cd.. : ∀ x0 : ι → (ι → ι → ο) → ι → ο . ∀ x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ f6068.. x0 x3 (x2 x3)) ⟶ f6068.. x0 x1 (x0 x1 x2) (proof)Theorem 4d242.. : ∀ x0 : ι → (ι → ι → ο) → ι → ο . ∀ x1 . ∀ x2 : ι → ο . f6068.. x0 x1 x2 ⟶ ∀ x3 : ο . (∀ x4 : ι → ι → ο . and (∀ x5 . x5 ∈ x1 ⟶ f6068.. x0 x5 (x4 x5)) (x2 = x0 x1 x4) ⟶ x3) ⟶ x3 (proof)Theorem ebaf1.. : ∀ x0 : ι → (ι → ι → ο) → ι → ο . (∀ x1 . ∀ x2 x3 : ι → ι → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . ∀ x2 x3 : ι → ο . f6068.. x0 x1 x2 ⟶ f6068.. x0 x1 x3 ⟶ x2 = x3 (proof)Theorem 2f624.. : ∀ x0 : ι → (ι → ι → ο) → ι → ο . (∀ x1 . ∀ x2 x3 : ι → ι → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . f6068.. x0 x1 (In_rec_Vo1 x0 x1) (proof)Theorem 722ac.. : ∀ x0 : ι → (ι → ι → ο) → ι → ο . (∀ x1 . ∀ x2 x3 : ι → ι → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . f6068.. x0 x1 (x0 x1 (In_rec_Vo1 x0)) (proof)Theorem In_rec_Vo1_eqIn_rec_Vo1_eq : ∀ x0 : ι → (ι → ι → ο) → ι → ο . (∀ x1 . ∀ x2 x3 : ι → ι → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_Vo1 x0 x1 = x0 x1 (In_rec_Vo1 x0) (proof)Definition 2b1c2.. := λ x0 : ι → (ι → (ι → ο) → ο) → (ι → ο) → ο . λ x1 . λ x2 : (ι → ο) → ο . ∀ x3 : ι → ((ι → ο) → ο) → ο . (∀ x4 . ∀ x5 : ι → (ι → ο) → ο . (∀ x6 . x6 ∈ x4 ⟶ x3 x6 (x5 x6)) ⟶ x3 x4 (x0 x4 x5)) ⟶ x3 x1 x2Definition In_rec_Vo2In_rec_Vo2 := λ x0 : ι → (ι → (ι → ο) → ο) → (ι → ο) → ο . λ x1 . Descr_Vo2 (2b1c2.. x0 x1)Theorem 07e5d.. : ∀ x0 : ι → (ι → (ι → ο) → ο) → (ι → ο) → ο . ∀ x1 . ∀ x2 : ι → (ι → ο) → ο . (∀ x3 . x3 ∈ x1 ⟶ 2b1c2.. x0 x3 (x2 x3)) ⟶ 2b1c2.. x0 x1 (x0 x1 x2) (proof)Theorem 994ef.. : ∀ x0 : ι → (ι → (ι → ο) → ο) → (ι → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . 2b1c2.. x0 x1 x2 ⟶ ∀ x3 : ο . (∀ x4 : ι → (ι → ο) → ο . and (∀ x5 . x5 ∈ x1 ⟶ 2b1c2.. x0 x5 (x4 x5)) (x2 = x0 x1 x4) ⟶ x3) ⟶ x3 (proof)Theorem d8d0b.. : ∀ x0 : ι → (ι → (ι → ο) → ο) → (ι → ο) → ο . (∀ x1 . ∀ x2 x3 : ι → (ι → ο) → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . ∀ x2 x3 : (ι → ο) → ο . 2b1c2.. x0 x1 x2 ⟶ 2b1c2.. x0 x1 x3 ⟶ x2 = x3 (proof)Theorem 2cb7a.. : ∀ x0 : ι → (ι → (ι → ο) → ο) → (ι → ο) → ο . (∀ x1 . ∀ x2 x3 : ι → (ι → ο) → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . 2b1c2.. x0 x1 (In_rec_Vo2 x0 x1) (proof)Theorem 00e25.. : ∀ x0 : ι → (ι → (ι → ο) → ο) → (ι → ο) → ο . (∀ x1 . ∀ x2 x3 : ι → (ι → ο) → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . 2b1c2.. x0 x1 (x0 x1 (In_rec_Vo2 x0)) (proof)Theorem In_rec_Vo2_eqIn_rec_Vo2_eq : ∀ x0 : ι → (ι → (ι → ο) → ο) → (ι → ο) → ο . (∀ x1 . ∀ x2 x3 : ι → (ι → ο) → ο . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x2 = x0 x1 x3) ⟶ ∀ x1 . In_rec_Vo2 x0 x1 = x0 x1 (In_rec_Vo2 x0) (proof)
|
|