Search for blocks/addresses/...

Proofgold Address

address
PUaecKkXjVKm8dsQnUjTLfRbM16NDiqGHJo
total
0
mg
-
conjpub
-
current assets
54c6f../4ee18.. bday: 36385 doc published by PrCmT..
Known df_msub__df_mvh__df_mpst__df_msr__df_msta__df_mfs__df_mcls__df_mpps__df_mthm__df_m0s__df_msa__df_mwgfs__df_msyn__df_mtree__df_mst__df_msax__df_mufs__df_muv : ∀ x0 : ο . (wceq cmsub (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . co (cfv (cv x1) cmrex) (cfv (cv x1) cmvar) cpm) (λ x2 . cmpt (λ x3 . cfv (cv x1) cmex) (λ x3 . cop (cfv (cv x3) c1st) (cfv (cfv (cv x3) c2nd) (cfv (cv x2) (cfv (cv x1) cmrsub)))))))wceq cmvh (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cmvar) (λ x2 . cop (cfv (cv x2) (cfv (cv x1) cmty)) (cs1 (cv x2)))))wceq cmpst (cmpt (λ x1 . cvv) (λ x1 . cxp (cxp (crab (λ x2 . wceq (ccnv (cv x2)) (cv x2)) (λ x2 . cpw (cfv (cv x1) cmdv))) (cin (cpw (cfv (cv x1) cmex)) cfn)) (cfv (cv x1) cmex)))wceq cmsr (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cmpst) (λ x2 . csb (cfv (cfv (cv x2) c1st) c2nd) (λ x3 . csb (cfv (cv x2) c2nd) (λ x4 . cotp (cin (cfv (cfv (cv x2) c1st) c1st) (csb (cuni (cima (cfv (cv x1) cmvrs) (cun (cv x3) (csn (cv x4))))) (λ x5 . cxp (cv x5) (cv x5)))) (cv x3) (cv x4))))))wceq cmsta (cmpt (λ x1 . cvv) (λ x1 . crn (cfv (cv x1) cmsr)))wceq cmfs (cab (λ x1 . wa (wa (wceq (cin (cfv (cv x1) cmcn) (cfv (cv x1) cmvar)) c0) (wf (cfv (cv x1) cmvar) (cfv (cv x1) cmtc) (cfv (cv x1) cmty))) (wa (wss (cfv (cv x1) cmax) (cfv (cv x1) cmsta)) (wral (λ x2 . wn (wcel (cima (ccnv (cfv (cv x1) cmty)) (csn (cv x2))) cfn)) (λ x2 . cfv (cv x1) cmvt)))))wceq cmcls (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cpw (cfv (cv x1) cmdv)) (λ x2 x3 . cpw (cfv (cv x1) cmex)) (λ x2 x3 . cint (cab (λ x4 . wa (wss (cun (cv x3) (crn (cfv (cv x1) cmvh))) (cv x4)) (∀ x5 x6 x7 . wcel (cotp (cv x5) (cv x6) (cv x7)) (cfv (cv x1) cmax)wral (λ x8 . wa (wss (cima (cv x8) (cun (cv x6) (crn (cfv (cv x1) cmvh)))) (cv x4)) (∀ x9 x10 . wbr (cv x9) (cv x10) (cv x5)wss (cxp (cfv (cfv (cfv (cv x9) (cfv (cv x1) cmvh)) (cv x8)) (cfv (cv x1) cmvrs)) (cfv (cfv (cfv (cv x10) (cfv (cv x1) cmvh)) (cv x8)) (cfv (cv x1) cmvrs))) (cv x2))wcel (cfv (cv x7) (cv x8)) (cv x4)) (λ x8 . crn (cfv (cv x1) cmsub))))))))wceq cmpps (cmpt (λ x1 . cvv) (λ x1 . coprab (λ x2 x3 x4 . wa (wcel (cotp (cv x2) (cv x3) (cv x4)) (cfv (cv x1) cmpst)) (wcel (cv x4) (co (cv x2) (cv x3) (cfv (cv x1) cmcls))))))wceq cmthm (cmpt (λ x1 . cvv) (λ x1 . cima (ccnv (cfv (cv x1) cmsr)) (cima (cfv (cv x1) cmsr) (cfv (cv x1) cmpps))))wceq cm0s (cmpt (λ x1 . cvv) (λ x1 . cotp c0 c0 (cv x1)))wceq cmsa (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . w3a (wcel (cfv (cv x2) cm0s) (cfv (cv x1) cmax)) (wcel (cfv (cv x2) c1st) (cfv (cv x1) cmvt)) (wfun (cres (ccnv (cfv (cv x2) c2nd)) (cfv (cv x1) cmvar)))) (λ x2 . cfv (cv x1) cmex)))wceq cmwgfs (crab (λ x1 . ∀ x2 x3 x4 . wa (wcel (cotp (cv x2) (cv x3) (cv x4)) (cfv (cv x1) cmax)) (wcel (cfv (cv x4) c1st) (cfv (cv x1) cmvt))wrex (λ x5 . wcel (cv x4) (cima (cv x5) (cfv (cv x1) cmsa))) (λ x5 . crn (cfv (cv x1) cmsub))) (λ x1 . cmfs))wceq cmsy (cslot c6)wceq cmtree (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cpw (cfv (cv x1) cmdv)) (λ x2 x3 . cpw (cfv (cv x1) cmex)) (λ x2 x3 . cint (cab (λ x4 . w3a (wral (λ x5 . wbr (cv x5) (cop (cfv (cv x5) cm0s) c0) (cv x4)) (λ x5 . crn (cfv (cv x1) cmvh))) (wral (λ x5 . wbr (cv x5) (cop (cfv (cotp (cv x2) (cv x3) (cv x5)) (cfv (cv x1) cmsr)) c0) (cv x4)) (λ x5 . cv x3)) (∀ x5 x6 x7 . wcel (cotp (cv x5) (cv x6) (cv x7)) (cfv (cv x1) cmax)wral (λ x8 . (∀ x9 x10 . wbr (cv x9) (cv x10) (cv x5)wss (cxp (cfv (cfv (cfv (cv x9) (cfv (cv x1) cmvh)) (cv x8)) (cfv (cv x1) cmvrs)) (cfv (cfv (cfv (cv x10) (cfv (cv x1) cmvh)) (cv x8)) (cfv (cv x1) cmvrs))) (cv x2))wss (cxp (csn (cfv (cv x7) (cv x8))) (cixp (λ x9 . cun (cv x6) (cima (cfv (cv x1) cmvh) (cuni (cima (cfv (cv x1) cmvrs) (cun (cv x6) (csn (cv x7))))))) (λ x9 . cima (cv x4) (csn (cfv (cv x9) (cv x8)))))) (cv x4)) (λ x8 . crn (cfv (cv x1) cmsub))))))))wceq cmst (cmpt (λ x1 . cvv) (λ x1 . cres (co c0 c0 (cfv (cv x1) cmtree)) (cres (cfv (cv x1) cmex) (cfv (cv x1) cmvt))))wceq cmsax (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cmsa) (λ x2 . cima (cfv (cv x1) cmvh) (cfv (cv x2) (cfv (cv x1) cmvrs)))))wceq cmufs (crab (λ x1 . wfun (cfv (cv x1) cmst)) (λ x1 . cmgfs))wceq cmuv (cslot c7)x0)x0
Theorem df_msub : wceq cmsub (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . co (cfv (cv x0) cmrex) (cfv (cv x0) cmvar) cpm) (λ x1 . cmpt (λ x2 . cfv (cv x0) cmex) (λ x2 . cop (cfv (cv x2) c1st) (cfv (cfv (cv x2) c2nd) (cfv (cv x1) (cfv (cv x0) cmrsub))))))) (proof)
Theorem df_mvh : wceq cmvh (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) cmvar) (λ x1 . cop (cfv (cv x1) (cfv (cv x0) cmty)) (cs1 (cv x1))))) (proof)
Theorem df_mpst : wceq cmpst (cmpt (λ x0 . cvv) (λ x0 . cxp (cxp (crab (λ x1 . wceq (ccnv (cv x1)) (cv x1)) (λ x1 . cpw (cfv (cv x0) cmdv))) (cin (cpw (cfv (cv x0) cmex)) cfn)) (cfv (cv x0) cmex))) (proof)
Theorem df_msr : wceq cmsr (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) cmpst) (λ x1 . csb (cfv (cfv (cv x1) c1st) c2nd) (λ x2 . csb (cfv (cv x1) c2nd) (λ x3 . cotp (cin (cfv (cfv (cv x1) c1st) c1st) (csb (cuni (cima (cfv (cv x0) cmvrs) (cun (cv x2) (csn (cv x3))))) (λ x4 . cxp (cv x4) (cv x4)))) (cv x2) (cv x3)))))) (proof)
Theorem df_msta : wceq cmsta (cmpt (λ x0 . cvv) (λ x0 . crn (cfv (cv x0) cmsr))) (proof)
Theorem df_mfs : wceq cmfs (cab (λ x0 . wa (wa (wceq (cin (cfv (cv x0) cmcn) (cfv (cv x0) cmvar)) c0) (wf (cfv (cv x0) cmvar) (cfv (cv x0) cmtc) (cfv (cv x0) cmty))) (wa (wss (cfv (cv x0) cmax) (cfv (cv x0) cmsta)) (wral (λ x1 . wn (wcel (cima (ccnv (cfv (cv x0) cmty)) (csn (cv x1))) cfn)) (λ x1 . cfv (cv x0) cmvt))))) (proof)
Theorem df_mcls : wceq cmcls (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cpw (cfv (cv x0) cmdv)) (λ x1 x2 . cpw (cfv (cv x0) cmex)) (λ x1 x2 . cint (cab (λ x3 . wa (wss (cun (cv x2) (crn (cfv (cv x0) cmvh))) (cv x3)) (∀ x4 x5 x6 . wcel (cotp (cv x4) (cv x5) (cv x6)) (cfv (cv x0) cmax)wral (λ x7 . wa (wss (cima (cv x7) (cun (cv x5) (crn (cfv (cv x0) cmvh)))) (cv x3)) (∀ x8 x9 . wbr (cv x8) (cv x9) (cv x4)wss (cxp (cfv (cfv (cfv (cv x8) (cfv (cv x0) cmvh)) (cv x7)) (cfv (cv x0) cmvrs)) (cfv (cfv (cfv (cv x9) (cfv (cv x0) cmvh)) (cv x7)) (cfv (cv x0) cmvrs))) (cv x1))wcel (cfv (cv x6) (cv x7)) (cv x3)) (λ x7 . crn (cfv (cv x0) cmsub)))))))) (proof)
Theorem df_mpps : wceq cmpps (cmpt (λ x0 . cvv) (λ x0 . coprab (λ x1 x2 x3 . wa (wcel (cotp (cv x1) (cv x2) (cv x3)) (cfv (cv x0) cmpst)) (wcel (cv x3) (co (cv x1) (cv x2) (cfv (cv x0) cmcls)))))) (proof)
Theorem df_mthm : wceq cmthm (cmpt (λ x0 . cvv) (λ x0 . cima (ccnv (cfv (cv x0) cmsr)) (cima (cfv (cv x0) cmsr) (cfv (cv x0) cmpps)))) (proof)
Theorem df_m0s : wceq cm0s (cmpt (λ x0 . cvv) (λ x0 . cotp c0 c0 (cv x0))) (proof)
Theorem df_msa : wceq cmsa (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . w3a (wcel (cfv (cv x1) cm0s) (cfv (cv x0) cmax)) (wcel (cfv (cv x1) c1st) (cfv (cv x0) cmvt)) (wfun (cres (ccnv (cfv (cv x1) c2nd)) (cfv (cv x0) cmvar)))) (λ x1 . cfv (cv x0) cmex))) (proof)
Theorem df_mwgfs : wceq cmwgfs (crab (λ x0 . ∀ x1 x2 x3 . wa (wcel (cotp (cv x1) (cv x2) (cv x3)) (cfv (cv x0) cmax)) (wcel (cfv (cv x3) c1st) (cfv (cv x0) cmvt))wrex (λ x4 . wcel (cv x3) (cima (cv x4) (cfv (cv x0) cmsa))) (λ x4 . crn (cfv (cv x0) cmsub))) (λ x0 . cmfs)) (proof)
Theorem df_msyn : wceq cmsy (cslot c6) (proof)
Theorem df_mtree : wceq cmtree (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cpw (cfv (cv x0) cmdv)) (λ x1 x2 . cpw (cfv (cv x0) cmex)) (λ x1 x2 . cint (cab (λ x3 . w3a (wral (λ x4 . wbr (cv x4) (cop (cfv (cv x4) cm0s) c0) (cv x3)) (λ x4 . crn (cfv (cv x0) cmvh))) (wral (λ x4 . wbr (cv x4) (cop (cfv (cotp (cv x1) (cv x2) (cv x4)) (cfv (cv x0) cmsr)) c0) (cv x3)) (λ x4 . cv x2)) (∀ x4 x5 x6 . wcel (cotp (cv x4) (cv x5) (cv x6)) (cfv (cv x0) cmax)wral (λ x7 . (∀ x8 x9 . wbr (cv x8) (cv x9) (cv x4)wss (cxp (cfv (cfv (cfv (cv x8) (cfv (cv x0) cmvh)) (cv x7)) (cfv (cv x0) cmvrs)) (cfv (cfv (cfv (cv x9) (cfv (cv x0) cmvh)) (cv x7)) (cfv (cv x0) cmvrs))) (cv x1))wss (cxp (csn (cfv (cv x6) (cv x7))) (cixp (λ x8 . cun (cv x5) (cima (cfv (cv x0) cmvh) (cuni (cima (cfv (cv x0) cmvrs) (cun (cv x5) (csn (cv x6))))))) (λ x8 . cima (cv x3) (csn (cfv (cv x8) (cv x7)))))) (cv x3)) (λ x7 . crn (cfv (cv x0) cmsub)))))))) (proof)
Theorem df_mst : wceq cmst (cmpt (λ x0 . cvv) (λ x0 . cres (co c0 c0 (cfv (cv x0) cmtree)) (cres (cfv (cv x0) cmex) (cfv (cv x0) cmvt)))) (proof)
Theorem df_msax : wceq cmsax (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) cmsa) (λ x1 . cima (cfv (cv x0) cmvh) (cfv (cv x1) (cfv (cv x0) cmvrs))))) (proof)
Theorem df_mufs : wceq cmufs (crab (λ x0 . wfun (cfv (cv x0) cmst)) (λ x0 . cmgfs)) (proof)
Theorem df_muv : wceq cmuv (cslot c7) (proof)

previous assets