Search for blocks/addresses/...

Proofgold Address

address
PUcEg2HeP1PtQre29ezgLV7iHDs3tMW1BxR
total
0
mg
-
conjpub
-
current assets
b11c1../df2bf.. bday: 28531 doc published by PrQUS..
Param complexcomplex : ι
Param pair_tagpair_tag : ιιιι
Param CD_proj0CD_proj0 : ι(ιο) → ιι
Param CD_proj1CD_proj1 : ι(ιο) → ιι
Definition CD_conjCD_conj := λ x0 . λ x1 : ι → ο . λ x2 x3 : ι → ι . λ x4 . pair_tag x0 (x3 (CD_proj0 x0 x1 x4)) (x2 (CD_proj1 x0 x1 x4))
Param SingSing : ιι
Param ordsuccordsucc : ιι
Param SNoSNo : ιο
Param minus_SNominus_SNo : ιι
Definition conj_CSNoconj_CSNo := CD_conj (Sing 2) SNo minus_SNo (λ x0 . x0)
Definition CSNo_ImCSNo_Im := CD_proj1 (Sing 2) SNo
Definition CSNo_ReCSNo_Re := CD_proj0 (Sing 2) SNo
Param realreal : ι
Definition SNo_pairSNo_pair := pair_tag (Sing 2)
Known complex_Icomplex_I : ∀ x0 . x0real∀ x1 . x1realSNo_pair x0 x1complex
Known complex_Re_realcomplex_Re_real : ∀ x0 . x0complexCSNo_Re x0real
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Known complex_Im_realcomplex_Im_real : ∀ x0 . x0complexCSNo_Im x0real
Theorem complex_conj_CSNocomplex_conj_CSNo : ∀ x0 . x0complexconj_CSNo x0complex (proof)
Param lamSigma : ι(ιι) → ι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Definition CSNo_pairCSNo_pair := pair_tag (Sing 3)
Param apap : ιιι
Definition quaternionquaternion := {CSNo_pair (ap x0 0) (ap x0 1)|x0 ∈ setprod complex complex}
Param If_iIf_i : οιιι
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Theorem quaternion_Iquaternion_I : ∀ x0 . x0complex∀ x1 . x1complexCSNo_pair x0 x1quaternion (proof)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Theorem quaternion_Equaternion_E : ∀ x0 . x0quaternion∀ x1 : ο . (∀ x2 . x2complex∀ x3 . x3complexx0 = CSNo_pair x2 x3x1)x1 (proof)
Param HSNoHSNo : ιο
Param CSNoCSNo : ιο
Known HSNo_IHSNo_I : ∀ x0 x1 . CSNo x0CSNo x1HSNo (CSNo_pair x0 x1)
Known complex_CSNocomplex_CSNo : ∀ x0 . x0complexCSNo x0
Theorem quaternion_HSNoquaternion_HSNo : ∀ x0 . x0quaternionHSNo x0 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known CSNo_pair_0CSNo_pair_0 : ∀ x0 . CSNo_pair x0 0 = x0
Known complex_0complex_0 : 0complex
Theorem complex_quaternioncomplex_quaternion : complexquaternion (proof)
Theorem quaternion_0quaternion_0 : 0quaternion (proof)
Known complex_1complex_1 : 1complex
Theorem quaternion_1quaternion_1 : 1quaternion (proof)
Param Complex_iComplex_i : ι
Known complex_icomplex_i : Complex_icomplex
Theorem quaternion_iquaternion_i : Complex_iquaternion (proof)
Definition Quaternion_jQuaternion_j := CSNo_pair 0 1
Theorem quaternion_jquaternion_j : Quaternion_jquaternion (proof)
Definition Quaternion_kQuaternion_k := CSNo_pair 0 Complex_i
Theorem quaternion_kquaternion_k : Quaternion_kquaternion (proof)
Definition HSNo_proj0HSNo_proj0 := CD_proj0 (Sing 3) CSNo
Known HSNo_proj0_2HSNo_proj0_2 : ∀ x0 x1 . CSNo x0CSNo x1HSNo_proj0 (CSNo_pair x0 x1) = x0
Theorem quaternion_p0_eqquaternion_p0_eq : ∀ x0 . x0complex∀ x1 . x1complexHSNo_proj0 (CSNo_pair x0 x1) = x0 (proof)
Definition HSNo_proj1HSNo_proj1 := CD_proj1 (Sing 3) CSNo
Known HSNo_proj1_2HSNo_proj1_2 : ∀ x0 x1 . CSNo x0CSNo x1HSNo_proj1 (CSNo_pair x0 x1) = x1
Theorem quaternion_p1_eqquaternion_p1_eq : ∀ x0 . x0complex∀ x1 . x1complexHSNo_proj1 (CSNo_pair x0 x1) = x1 (proof)
Theorem quaternion_p0_complexquaternion_p0_complex : ∀ x0 . x0quaternionHSNo_proj0 x0complex (proof)
Theorem quaternion_p1_complexquaternion_p1_complex : ∀ x0 . x0quaternionHSNo_proj1 x0complex (proof)
Known HSNo_proj0proj1_splitHSNo_proj0proj1_split : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj0 x0 = HSNo_proj0 x1HSNo_proj1 x0 = HSNo_proj1 x1x0 = x1
Theorem quaternion_proj0proj1_splitquaternion_proj0proj1_split : ∀ x0 . x0quaternion∀ x1 . x1quaternionHSNo_proj0 x0 = HSNo_proj0 x1HSNo_proj1 x0 = HSNo_proj1 x1x0 = x1 (proof)
Definition CD_minusCD_minus := λ x0 . λ x1 : ι → ο . λ x2 : ι → ι . λ x3 . pair_tag x0 (x2 (CD_proj0 x0 x1 x3)) (x2 (CD_proj1 x0 x1 x3))
Param minus_CSNominus_CSNo : ιι
Definition minus_HSNominus_HSNo := CD_minus (Sing 3) CSNo minus_CSNo
Known complex_minus_CSNocomplex_minus_CSNo : ∀ x0 . x0complexminus_CSNo x0complex
Theorem quaternion_minus_HSNoquaternion_minus_HSNo : ∀ x0 . x0quaternionminus_HSNo x0quaternion (proof)
Definition conj_HSNoconj_HSNo := CD_conj (Sing 3) CSNo minus_CSNo conj_CSNo
Theorem quaternion_conj_HSNoquaternion_conj_HSNo : ∀ x0 . x0quaternionconj_HSNo x0quaternion (proof)
Definition CD_addCD_add := λ x0 . λ x1 : ι → ο . λ x2 : ι → ι → ι . λ x3 x4 . pair_tag x0 (x2 (CD_proj0 x0 x1 x3) (CD_proj0 x0 x1 x4)) (x2 (CD_proj1 x0 x1 x3) (CD_proj1 x0 x1 x4))
Param add_CSNoadd_CSNo : ιιι
Definition add_HSNoadd_HSNo := CD_add (Sing 3) CSNo add_CSNo
Known complex_add_CSNocomplex_add_CSNo : ∀ x0 . x0complex∀ x1 . x1complexadd_CSNo x0 x1complex
Theorem quaternion_add_HSNoquaternion_add_HSNo : ∀ x0 . x0quaternion∀ x1 . x1quaternionadd_HSNo x0 x1quaternion (proof)
Definition CD_mulCD_mul := λ x0 . λ x1 : ι → ο . λ x2 x3 : ι → ι . λ x4 x5 : ι → ι → ι . λ x6 x7 . pair_tag x0 (x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6)))) (x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7))))
Param mul_CSNomul_CSNo : ιιι
Definition mul_HSNomul_HSNo := CD_mul (Sing 3) CSNo minus_CSNo conj_CSNo add_CSNo mul_CSNo
Known complex_mul_CSNocomplex_mul_CSNo : ∀ x0 . x0complex∀ x1 . x1complexmul_CSNo x0 x1complex
Theorem quaternion_mul_HSNoquaternion_mul_HSNo : ∀ x0 . x0quaternion∀ x1 . x1quaternionmul_HSNo x0 x1quaternion (proof)
Theorem complex_p0_eqcomplex_p0_eq : ∀ x0 . x0complexHSNo_proj0 x0 = x0 (proof)
Theorem complex_p1_eqcomplex_p1_eq : ∀ x0 . x0complexHSNo_proj1 x0 = 0 (proof)
Definition HSNo_pairHSNo_pair := pair_tag (Sing 4)
Definition octonionoctonion := {HSNo_pair (ap x0 0) (ap x0 1)|x0 ∈ setprod quaternion quaternion}
Theorem octonion_Ioctonion_I : ∀ x0 . x0quaternion∀ x1 . x1quaternionHSNo_pair x0 x1octonion (proof)
Theorem octonion_Eoctonion_E : ∀ x0 . x0octonion∀ x1 : ο . (∀ x2 . x2quaternion∀ x3 . x3quaternionx0 = HSNo_pair x2 x3x1)x1 (proof)
Param OSNoOSNo : ιο
Known OSNo_IOSNo_I : ∀ x0 x1 . HSNo x0HSNo x1OSNo (HSNo_pair x0 x1)
Theorem octonion_OSNooctonion_OSNo : ∀ x0 . x0octonionOSNo x0 (proof)
Known HSNo_pair_0HSNo_pair_0 : ∀ x0 . HSNo_pair x0 0 = x0
Theorem quaternion_octonionquaternion_octonion : quaternionoctonion (proof)
Theorem octonion_0octonion_0 : 0octonion (proof)
Theorem octonion_1octonion_1 : 1octonion (proof)
Theorem octonion_ioctonion_i : Complex_ioctonion (proof)
Theorem octonion_joctonion_j : Quaternion_joctonion (proof)
Theorem octonion_koctonion_k : Quaternion_koctonion (proof)
Definition Octonion_i0Octonion_i0 := HSNo_pair 0 1
Theorem octonion_i0octonion_i0 : Octonion_i0octonion (proof)
Definition Octonion_i3Octonion_i3 := HSNo_pair 0 (minus_HSNo Complex_i)
Theorem octonion_i3octonion_i3 : Octonion_i3octonion (proof)
Definition Octonion_i5Octonion_i5 := HSNo_pair 0 (minus_HSNo Quaternion_k)
Theorem octonion_i5octonion_i5 : Octonion_i5octonion (proof)
Definition Octonion_i6Octonion_i6 := HSNo_pair 0 (minus_HSNo Quaternion_j)
Theorem octonion_i6octonion_i6 : Octonion_i6octonion (proof)
Definition OSNo_proj0OSNo_proj0 := CD_proj0 (Sing 4) HSNo
Known OSNo_proj0_2OSNo_proj0_2 : ∀ x0 x1 . HSNo x0HSNo x1OSNo_proj0 (HSNo_pair x0 x1) = x0
Theorem octonion_p0_eqoctonion_p0_eq : ∀ x0 . x0quaternion∀ x1 . x1quaternionOSNo_proj0 (HSNo_pair x0 x1) = x0 (proof)
Definition OSNo_proj1OSNo_proj1 := CD_proj1 (Sing 4) HSNo
Known OSNo_proj1_2OSNo_proj1_2 : ∀ x0 x1 . HSNo x0HSNo x1OSNo_proj1 (HSNo_pair x0 x1) = x1
Theorem octonion_p1_eqoctonion_p1_eq : ∀ x0 . x0quaternion∀ x1 . x1quaternionOSNo_proj1 (HSNo_pair x0 x1) = x1 (proof)
Theorem octonion_p0_quaternionoctonion_p0_quaternion : ∀ x0 . x0octonionOSNo_proj0 x0quaternion (proof)
Theorem octonion_p1_quaternionoctonion_p1_quaternion : ∀ x0 . x0octonionOSNo_proj1 x0quaternion (proof)
Known OSNo_proj0proj1_splitOSNo_proj0proj1_split : ∀ x0 x1 . OSNo x0OSNo x1OSNo_proj0 x0 = OSNo_proj0 x1OSNo_proj1 x0 = OSNo_proj1 x1x0 = x1
Theorem octonion_proj0proj1_splitoctonion_proj0proj1_split : ∀ x0 . x0octonion∀ x1 . x1octonionOSNo_proj0 x0 = OSNo_proj0 x1OSNo_proj1 x0 = OSNo_proj1 x1x0 = x1 (proof)
Definition minus_OSNominus_OSNo := CD_minus (Sing 4) HSNo minus_HSNo
Theorem octonion_minus_OSNooctonion_minus_OSNo : ∀ x0 . x0octonionminus_OSNo x0octonion (proof)
Definition conj_OSNoconj_OSNo := CD_conj (Sing 4) HSNo minus_HSNo conj_HSNo
Theorem octonion_conj_OSNooctonion_conj_OSNo : ∀ x0 . x0octonionconj_OSNo x0octonion (proof)
Definition add_OSNoadd_OSNo := CD_add (Sing 4) HSNo add_HSNo
Theorem octonion_add_OSNooctonion_add_OSNo : ∀ x0 . x0octonion∀ x1 . x1octonionadd_OSNo x0 x1octonion (proof)
Definition mul_OSNomul_OSNo := CD_mul (Sing 4) HSNo minus_HSNo conj_HSNo add_HSNo mul_HSNo
Theorem octonion_mul_OSNooctonion_mul_OSNo : ∀ x0 . x0octonion∀ x1 . x1octonionmul_OSNo x0 x1octonion (proof)
Theorem quaternion_p0_eq'quaternion_p0_eq : ∀ x0 . x0quaternionOSNo_proj0 x0 = x0 (proof)
Theorem quaternion_p1_eq'quaternion_p1_eq : ∀ x0 . x0quaternionOSNo_proj1 x0 = 0 (proof)

previous assets