current assets |
---|
5fe4b../a0a93.. bday: 4982 doc published by Pr6Pc..Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Param bijbij : ι → ι → (ι → ι) → οKnown bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4) ⟶ (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 : ο . (∀ x5 . and (x5 ∈ x0) (x2 x5 = x3) ⟶ x4) ⟶ x4) ⟶ bij x0 x1 x2Param equipequip : ι → ι → οKnown equip_refequip_ref : ∀ x0 . equip x0 x0Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5 ⟶ x3 x5 x4) ⟶ or (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (equip x0 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ x3 x6 x7)) ⟶ x4) ⟶ x4) (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (equip x1 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ not (x3 x6 x7))) ⟶ x4) ⟶ x4)Param nat_pnat_p : ι → οParam ordsuccordsucc : ι → ιKnown nat_6nat_6 : nat_p 6Known 1c09e.. : ∀ x0 x1 x2 x3 . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ι . equip x0 x1 ⟶ bij x2 x3 x5 ⟶ (∀ x6 : ο . (∀ x7 . and (x7 ⊆ x2) (and (equip x0 x7) (∀ x8 . x8 ∈ x7 ⟶ ∀ x9 . x9 ∈ x7 ⟶ (x8 = x9 ⟶ ∀ x10 : ο . x10) ⟶ x4 (x5 x8) (x5 x9))) ⟶ x6) ⟶ x6) ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ⊆ x3) (and (equip x1 x7) (∀ x8 . x8 ∈ x7 ⟶ ∀ x9 . x9 ∈ x7 ⟶ (x8 = x9 ⟶ ∀ x10 : ο . x10) ⟶ x4 x8 x9)) ⟶ x6) ⟶ x6Param binunionbinunion : ι → ι → ιParam SingSing : ι → ιDefinition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)Param UPairUPair : ι → ι → ιKnown b2ff4.. : ∀ x0 x1 x2 . (x0 = x1 ⟶ ∀ x3 : ο . x3) ⟶ (x0 = x2 ⟶ ∀ x3 : ο . x3) ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ equip 3 (SetAdjoin (UPair x0 x1) x2)Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known binunionEbinunionE : ∀ x0 x1 x2 . x2 ∈ binunion x0 x1 ⟶ or (x2 ∈ x0) (x2 ∈ x1)Known UPairEUPairE : ∀ x0 x1 x2 . x0 ∈ UPair x1 x2 ⟶ or (x0 = x1) (x0 = x2)Known SingESingE : ∀ x0 x1 . x1 ∈ Sing x0 ⟶ x1 = x0Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Theorem ec023.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1) ⟶ ∀ x1 . x1 ∈ 6 ⟶ ∀ x2 . x2 ∈ 6 ⟶ ∀ x3 . x3 ∈ 6 ⟶ (x1 = x2 ⟶ ∀ x4 : ο . x4) ⟶ (x1 = x3 ⟶ ∀ x4 : ο . x4) ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ x0 x1 x2 ⟶ x0 x1 x3 ⟶ x0 x2 x3 ⟶ ∀ x4 : ο . (∀ x5 . and (x5 ⊆ 6) (and (equip 3 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ x0 x6 x7)) ⟶ x4) ⟶ x4 (proof)Known xmxm : ∀ x0 : ο . or x0 (not x0)Known orILorIL : ∀ x0 x1 : ο . x0 ⟶ or x0 x1Known In_0_4In_0_4 : 0 ∈ 4Known In_1_4In_1_4 : 1 ∈ 4Known In_0_6In_0_6 : 0 ∈ 6Known In_1_6In_1_6 : 1 ∈ 6Known In_4_6In_4_6 : 4 ∈ 6Known neq_0_1neq_0_1 : 0 = 1 ⟶ ∀ x0 : ο . x0Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known neq_4_0neq_4_0 : 4 = 0 ⟶ ∀ x0 : ο . x0Known neq_4_1neq_4_1 : 4 = 1 ⟶ ∀ x0 : ο . x0Known orIRorIR : ∀ x0 x1 : ο . x1 ⟶ or x0 x1Known In_5_6In_5_6 : 5 ∈ 6Known neq_5_0neq_5_0 : 5 = 0 ⟶ ∀ x0 : ο . x0Known neq_5_1neq_5_1 : 5 = 1 ⟶ ∀ x0 : ο . x0Known In_2_4In_2_4 : 2 ∈ 4Known In_2_6In_2_6 : 2 ∈ 6Known neq_0_2neq_0_2 : 0 = 2 ⟶ ∀ x0 : ο . x0Known neq_4_2neq_4_2 : 4 = 2 ⟶ ∀ x0 : ο . x0Known neq_5_2neq_5_2 : 5 = 2 ⟶ ∀ x0 : ο . x0Known In_3_4In_3_4 : 3 ∈ 4Known In_3_6In_3_6 : 3 ∈ 6Known neq_3_0neq_3_0 : 3 = 0 ⟶ ∀ x0 : ο . x0Known neq_4_3neq_4_3 : 4 = 3 ⟶ ∀ x0 : ο . x0Known neq_5_3neq_5_3 : 5 = 3 ⟶ ∀ x0 : ο . x0Known neq_1_2neq_1_2 : 1 = 2 ⟶ ∀ x0 : ο . x0Known neq_3_1neq_3_1 : 3 = 1 ⟶ ∀ x0 : ο . x0Known neq_3_2neq_3_2 : 3 = 2 ⟶ ∀ x0 : ο . x0Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known In_irrefIn_irref : ∀ x0 . nIn x0 x0Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0 ∈ x1 ⟶ x1 ∈ x0 ⟶ FalseKnown In_4_5In_4_5 : 4 ∈ 5Known neq_5_4neq_5_4 : 5 = 4 ⟶ ∀ x0 : ο . x0Known nat_transnat_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ x1 ⊆ x0Theorem 245de.. : ∀ x0 : ι → ι → ο . x0 0 4 ⟶ x0 4 5 ⟶ (∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1) ⟶ or (∀ x1 : ο . (∀ x2 . and (x2 ⊆ 6) (and (equip 3 x2) (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x0 x3 x4)) ⟶ x1) ⟶ x1) (∀ x1 : ο . (∀ x2 . and (x2 ⊆ 6) (and (equip 3 x2) (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x0 x3 x4))) ⟶ x1) ⟶ x1) (proof)Known neq_1_0neq_1_0 : 1 = 0 ⟶ ∀ x0 : ο . x0Known cases_6cases_6 : ∀ x0 . x0 ∈ 6 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 1 ⟶ x1 2 ⟶ x1 3 ⟶ x1 4 ⟶ x1 5 ⟶ x1 x0Known neq_2_0neq_2_0 : 2 = 0 ⟶ ∀ x0 : ο . x0Known neq_2_1neq_2_1 : 2 = 1 ⟶ ∀ x0 : ο . x0Param If_iIf_i : ο → ι → ι → ιKnown and3Iand3I : ∀ x0 x1 x2 : ο . x0 ⟶ x1 ⟶ x2 ⟶ and (and x0 x1) x2Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0 ⟶ If_i x0 x1 x2 = x1Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0 ⟶ If_i x0 x1 x2 = x2Theorem b4917.. : ∀ x0 : ι → ι → ο . x0 4 5 ⟶ (∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1) ⟶ or (∀ x1 : ο . (∀ x2 . and (x2 ⊆ 6) (and (equip 3 x2) (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x0 x3 x4)) ⟶ x1) ⟶ x1) (∀ x1 : ο . (∀ x2 . and (x2 ⊆ 6) (and (equip 3 x2) (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x0 x3 x4))) ⟶ x1) ⟶ x1) (proof)Known pred_ext_2pred_ext_2 : ∀ x0 x1 : ι → ο . (∀ x2 . x0 x2 ⟶ x1 x2) ⟶ (∀ x2 . x1 x2 ⟶ x0 x2) ⟶ x0 = x1Known dnegdneg : ∀ x0 : ο . not (not x0) ⟶ x0Theorem TwoRamseyProp_3_3_6TwoRamseyProp_3_3_6 : TwoRamseyProp 3 3 6 (proof)
|
|