Search for blocks/addresses/...

Proofgold Address

address
PUgy2rnuapYBg4Pobv4xBjqkVTteUr7Qgcw
total
0
mg
-
conjpub
-
current assets
d5960../a9efc.. bday: 36386 doc published by PrCmT..
Known df_rnghom__df_rngiso__df_ric__df_drng__df_field__df_subrg__df_rgspn__df_abv__df_staf__df_srng__df_lmod__df_scaf__df_lss__df_lsp__df_lmhm__df_lmim__df_lmic__df_lbs : ∀ x0 : ο . (wceq crh (cmpt2 (λ x1 x2 . crg) (λ x1 x2 . crg) (λ x1 x2 . csb (cfv (cv x1) cbs) (λ x3 . csb (cfv (cv x2) cbs) (λ x4 . crab (λ x5 . wa (wceq (cfv (cfv (cv x1) cur) (cv x5)) (cfv (cv x2) cur)) (wral (λ x6 . wral (λ x7 . wa (wceq (cfv (co (cv x6) (cv x7) (cfv (cv x1) cplusg)) (cv x5)) (co (cfv (cv x6) (cv x5)) (cfv (cv x7) (cv x5)) (cfv (cv x2) cplusg))) (wceq (cfv (co (cv x6) (cv x7) (cfv (cv x1) cmulr)) (cv x5)) (co (cfv (cv x6) (cv x5)) (cfv (cv x7) (cv x5)) (cfv (cv x2) cmulr)))) (λ x7 . cv x3)) (λ x6 . cv x3))) (λ x5 . co (cv x4) (cv x3) cmap)))))wceq crs (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . crab (λ x3 . wcel (ccnv (cv x3)) (co (cv x2) (cv x1) crh)) (λ x3 . co (cv x1) (cv x2) crh)))wceq cric (cima (ccnv crs) (cdif cvv c1o))wceq cdr (crab (λ x1 . wceq (cfv (cv x1) cui) (cdif (cfv (cv x1) cbs) (csn (cfv (cv x1) c0g)))) (λ x1 . crg))wceq cfield (cin cdr ccrg)wceq csubrg (cmpt (λ x1 . crg) (λ x1 . crab (λ x2 . wa (wcel (co (cv x1) (cv x2) cress) crg) (wcel (cfv (cv x1) cur) (cv x2))) (λ x2 . cpw (cfv (cv x1) cbs))))wceq crgspn (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . cint (crab (λ x3 . wss (cv x2) (cv x3)) (λ x3 . cfv (cv x1) csubrg)))))wceq cabv (cmpt (λ x1 . crg) (λ x1 . crab (λ x2 . wral (λ x3 . wa (wb (wceq (cfv (cv x3) (cv x2)) cc0) (wceq (cv x3) (cfv (cv x1) c0g))) (wral (λ x4 . wa (wceq (cfv (co (cv x3) (cv x4) (cfv (cv x1) cmulr)) (cv x2)) (co (cfv (cv x3) (cv x2)) (cfv (cv x4) (cv x2)) cmul)) (wbr (cfv (co (cv x3) (cv x4) (cfv (cv x1) cplusg)) (cv x2)) (co (cfv (cv x3) (cv x2)) (cfv (cv x4) (cv x2)) caddc) cle)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs)) (λ x2 . co (co cc0 cpnf cico) (cfv (cv x1) cbs) cmap)))wceq cstf (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cbs) (λ x2 . cfv (cv x2) (cfv (cv x1) cstv))))wceq csr (cab (λ x1 . wsbc (λ x2 . wa (wcel (cv x2) (co (cv x1) (cfv (cv x1) coppr) crh)) (wceq (cv x2) (ccnv (cv x2)))) (cfv (cv x1) cstf)))wceq clmod (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wsbc (λ x5 . wsbc (λ x6 . wsbc (λ x7 . wsbc (λ x8 . wa (wcel (cv x4) crg) (wral (λ x9 . wral (λ x10 . wral (λ x11 . wral (λ x12 . wa (w3a (wcel (co (cv x10) (cv x12) (cv x5)) (cv x2)) (wceq (co (cv x10) (co (cv x12) (cv x11) (cv x3)) (cv x5)) (co (co (cv x10) (cv x12) (cv x5)) (co (cv x10) (cv x11) (cv x5)) (cv x3))) (wceq (co (co (cv x9) (cv x10) (cv x7)) (cv x12) (cv x5)) (co (co (cv x9) (cv x12) (cv x5)) (co (cv x10) (cv x12) (cv x5)) (cv x3)))) (wa (wceq (co (co (cv x9) (cv x10) (cv x8)) (cv x12) (cv x5)) (co (cv x9) (co (cv x10) (cv x12) (cv x5)) (cv x5))) (wceq (co (cfv (cv x4) cur) (cv x12) (cv x5)) (cv x12)))) (λ x12 . cv x2)) (λ x11 . cv x2)) (λ x10 . cv x6)) (λ x9 . cv x6))) (cfv (cv x4) cmulr)) (cfv (cv x4) cplusg)) (cfv (cv x4) cbs)) (cfv (cv x1) cvsca)) (cfv (cv x1) csca)) (cfv (cv x1) cplusg)) (cfv (cv x1) cbs)) (λ x1 . cgrp))wceq cscaf (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cfv (cv x1) csca) cbs) (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . co (cv x2) (cv x3) (cfv (cv x1) cvsca))))wceq clss (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wcel (co (co (cv x3) (cv x4) (cfv (cv x1) cvsca)) (cv x5) (cfv (cv x1) cplusg)) (cv x2)) (λ x5 . cv x2)) (λ x4 . cv x2)) (λ x3 . cfv (cfv (cv x1) csca) cbs)) (λ x2 . cdif (cpw (cfv (cv x1) cbs)) (csn c0))))wceq clspn (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . cint (crab (λ x3 . wss (cv x2) (cv x3)) (λ x3 . cfv (cv x1) clss)))))wceq clmhm (cmpt2 (λ x1 x2 . clmod) (λ x1 x2 . clmod) (λ x1 x2 . crab (λ x3 . wsbc (λ x4 . wa (wceq (cfv (cv x2) csca) (cv x4)) (wral (λ x5 . wral (λ x6 . wceq (cfv (co (cv x5) (cv x6) (cfv (cv x1) cvsca)) (cv x3)) (co (cv x5) (cfv (cv x6) (cv x3)) (cfv (cv x2) cvsca))) (λ x6 . cfv (cv x1) cbs)) (λ x5 . cfv (cv x4) cbs))) (cfv (cv x1) csca)) (λ x3 . co (cv x1) (cv x2) cghm)))wceq clmim (cmpt2 (λ x1 x2 . clmod) (λ x1 x2 . clmod) (λ x1 x2 . crab (λ x3 . wf1o (cfv (cv x1) cbs) (cfv (cv x2) cbs) (cv x3)) (λ x3 . co (cv x1) (cv x2) clmhm)))wceq clmic (cima (ccnv clmim) (cdif cvv c1o))wceq clbs (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wa (wceq (cfv (cv x2) (cv x3)) (cfv (cv x1) cbs)) (wral (λ x5 . wral (λ x6 . wn (wcel (co (cv x6) (cv x5) (cfv (cv x1) cvsca)) (cfv (cdif (cv x2) (csn (cv x5))) (cv x3)))) (λ x6 . cdif (cfv (cv x4) cbs) (csn (cfv (cv x4) c0g)))) (λ x5 . cv x2))) (cfv (cv x1) csca)) (cfv (cv x1) clspn)) (λ x2 . cpw (cfv (cv x1) cbs))))x0)x0
Theorem df_rnghom : wceq crh (cmpt2 (λ x0 x1 . crg) (λ x0 x1 . crg) (λ x0 x1 . csb (cfv (cv x0) cbs) (λ x2 . csb (cfv (cv x1) cbs) (λ x3 . crab (λ x4 . wa (wceq (cfv (cfv (cv x0) cur) (cv x4)) (cfv (cv x1) cur)) (wral (λ x5 . wral (λ x6 . wa (wceq (cfv (co (cv x5) (cv x6) (cfv (cv x0) cplusg)) (cv x4)) (co (cfv (cv x5) (cv x4)) (cfv (cv x6) (cv x4)) (cfv (cv x1) cplusg))) (wceq (cfv (co (cv x5) (cv x6) (cfv (cv x0) cmulr)) (cv x4)) (co (cfv (cv x5) (cv x4)) (cfv (cv x6) (cv x4)) (cfv (cv x1) cmulr)))) (λ x6 . cv x2)) (λ x5 . cv x2))) (λ x4 . co (cv x3) (cv x2) cmap))))) (proof)
Theorem df_rngiso : wceq crs (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . crab (λ x2 . wcel (ccnv (cv x2)) (co (cv x1) (cv x0) crh)) (λ x2 . co (cv x0) (cv x1) crh))) (proof)
Theorem df_ric : wceq cric (cima (ccnv crs) (cdif cvv c1o)) (proof)
Theorem df_drng : wceq cdr (crab (λ x0 . wceq (cfv (cv x0) cui) (cdif (cfv (cv x0) cbs) (csn (cfv (cv x0) c0g)))) (λ x0 . crg)) (proof)
Theorem df_field : wceq cfield (cin cdr ccrg) (proof)
Theorem df_subrg : wceq csubrg (cmpt (λ x0 . crg) (λ x0 . crab (λ x1 . wa (wcel (co (cv x0) (cv x1) cress) crg) (wcel (cfv (cv x0) cur) (cv x1))) (λ x1 . cpw (cfv (cv x0) cbs)))) (proof)
Theorem df_rgspn : wceq crgspn (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cpw (cfv (cv x0) cbs)) (λ x1 . cint (crab (λ x2 . wss (cv x1) (cv x2)) (λ x2 . cfv (cv x0) csubrg))))) (proof)
Theorem df_abv : wceq cabv (cmpt (λ x0 . crg) (λ x0 . crab (λ x1 . wral (λ x2 . wa (wb (wceq (cfv (cv x2) (cv x1)) cc0) (wceq (cv x2) (cfv (cv x0) c0g))) (wral (λ x3 . wa (wceq (cfv (co (cv x2) (cv x3) (cfv (cv x0) cmulr)) (cv x1)) (co (cfv (cv x2) (cv x1)) (cfv (cv x3) (cv x1)) cmul)) (wbr (cfv (co (cv x2) (cv x3) (cfv (cv x0) cplusg)) (cv x1)) (co (cfv (cv x2) (cv x1)) (cfv (cv x3) (cv x1)) caddc) cle)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs)) (λ x1 . co (co cc0 cpnf cico) (cfv (cv x0) cbs) cmap))) (proof)
Theorem df_staf : wceq cstf (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) cbs) (λ x1 . cfv (cv x1) (cfv (cv x0) cstv)))) (proof)
Theorem df_srng : wceq csr (cab (λ x0 . wsbc (λ x1 . wa (wcel (cv x1) (co (cv x0) (cfv (cv x0) coppr) crh)) (wceq (cv x1) (ccnv (cv x1)))) (cfv (cv x0) cstf))) (proof)
Theorem df_lmod : wceq clmod (crab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wsbc (λ x5 . wsbc (λ x6 . wsbc (λ x7 . wa (wcel (cv x3) crg) (wral (λ x8 . wral (λ x9 . wral (λ x10 . wral (λ x11 . wa (w3a (wcel (co (cv x9) (cv x11) (cv x4)) (cv x1)) (wceq (co (cv x9) (co (cv x11) (cv x10) (cv x2)) (cv x4)) (co (co (cv x9) (cv x11) (cv x4)) (co (cv x9) (cv x10) (cv x4)) (cv x2))) (wceq (co (co (cv x8) (cv x9) (cv x6)) (cv x11) (cv x4)) (co (co (cv x8) (cv x11) (cv x4)) (co (cv x9) (cv x11) (cv x4)) (cv x2)))) (wa (wceq (co (co (cv x8) (cv x9) (cv x7)) (cv x11) (cv x4)) (co (cv x8) (co (cv x9) (cv x11) (cv x4)) (cv x4))) (wceq (co (cfv (cv x3) cur) (cv x11) (cv x4)) (cv x11)))) (λ x11 . cv x1)) (λ x10 . cv x1)) (λ x9 . cv x5)) (λ x8 . cv x5))) (cfv (cv x3) cmulr)) (cfv (cv x3) cplusg)) (cfv (cv x3) cbs)) (cfv (cv x0) cvsca)) (cfv (cv x0) csca)) (cfv (cv x0) cplusg)) (cfv (cv x0) cbs)) (λ x0 . cgrp)) (proof)
Theorem df_scaf : wceq cscaf (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cfv (cfv (cv x0) csca) cbs) (λ x1 x2 . cfv (cv x0) cbs) (λ x1 x2 . co (cv x1) (cv x2) (cfv (cv x0) cvsca)))) (proof)
Theorem df_lss : wceq clss (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wral (λ x2 . wral (λ x3 . wral (λ x4 . wcel (co (co (cv x2) (cv x3) (cfv (cv x0) cvsca)) (cv x4) (cfv (cv x0) cplusg)) (cv x1)) (λ x4 . cv x1)) (λ x3 . cv x1)) (λ x2 . cfv (cfv (cv x0) csca) cbs)) (λ x1 . cdif (cpw (cfv (cv x0) cbs)) (csn c0)))) (proof)
Theorem df_lsp : wceq clspn (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cpw (cfv (cv x0) cbs)) (λ x1 . cint (crab (λ x2 . wss (cv x1) (cv x2)) (λ x2 . cfv (cv x0) clss))))) (proof)
Theorem df_lmhm : wceq clmhm (cmpt2 (λ x0 x1 . clmod) (λ x0 x1 . clmod) (λ x0 x1 . crab (λ x2 . wsbc (λ x3 . wa (wceq (cfv (cv x1) csca) (cv x3)) (wral (λ x4 . wral (λ x5 . wceq (cfv (co (cv x4) (cv x5) (cfv (cv x0) cvsca)) (cv x2)) (co (cv x4) (cfv (cv x5) (cv x2)) (cfv (cv x1) cvsca))) (λ x5 . cfv (cv x0) cbs)) (λ x4 . cfv (cv x3) cbs))) (cfv (cv x0) csca)) (λ x2 . co (cv x0) (cv x1) cghm))) (proof)
Theorem df_lmim : wceq clmim (cmpt2 (λ x0 x1 . clmod) (λ x0 x1 . clmod) (λ x0 x1 . crab (λ x2 . wf1o (cfv (cv x0) cbs) (cfv (cv x1) cbs) (cv x2)) (λ x2 . co (cv x0) (cv x1) clmhm))) (proof)
Theorem df_lmic : wceq clmic (cima (ccnv clmim) (cdif cvv c1o)) (proof)
Theorem df_lbs : wceq clbs (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wa (wceq (cfv (cv x1) (cv x2)) (cfv (cv x0) cbs)) (wral (λ x4 . wral (λ x5 . wn (wcel (co (cv x5) (cv x4) (cfv (cv x0) cvsca)) (cfv (cdif (cv x1) (csn (cv x4))) (cv x2)))) (λ x5 . cdif (cfv (cv x3) cbs) (csn (cfv (cv x3) c0g)))) (λ x4 . cv x1))) (cfv (cv x0) csca)) (cfv (cv x0) clspn)) (λ x1 . cpw (cfv (cv x0) cbs)))) (proof)

previous assets