Search for blocks/addresses/...
Proofgold Address
address
PUgzH1zPDyJRfYX13yoKa9X7y7BtM7z63qW
total
0
mg
-
conjpub
-
current assets
38ef5..
/
923e7..
bday:
4938
doc published by
Pr6Pc..
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
encode_c
encode_c
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Param
encode_b
encode_b
:
ι
→
CT2
ι
Definition
pack_c_b
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_c
x0
x1
)
(
encode_b
x0
x2
)
)
)
Param
ap
ap
:
ι
→
ι
→
ι
Known
tuple_3_0_eq
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
Theorem
pack_c_b_0_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
x0
=
pack_c_b
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_c_b_0_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
x0
=
ap
(
pack_c_b
x0
x1
x2
)
0
(proof)
Param
decode_c
decode_c
:
ι
→
(
ι
→
ο
) →
ο
Known
tuple_3_1_eq
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
Known
decode_encode_c
decode_encode_c
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
x3
∈
x0
)
⟶
decode_c
(
encode_c
x0
x1
)
x2
=
x1
x2
Theorem
pack_c_b_1_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
x0
=
pack_c_b
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
x5
∈
x1
)
⟶
x2
x4
=
decode_c
(
ap
x0
1
)
x4
(proof)
Theorem
pack_c_b_1_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
x4
∈
x0
)
⟶
x1
x3
=
decode_c
(
ap
(
pack_c_b
x0
x1
x2
)
1
)
x3
(proof)
Param
decode_b
decode_b
:
ι
→
ι
→
ι
→
ι
Known
tuple_3_2_eq
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
Known
decode_encode_b
decode_encode_b
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_b
(
encode_b
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
pack_c_b_2_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
x0
=
pack_c_b
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x3
x4
x5
=
decode_b
(
ap
x0
2
)
x4
x5
(proof)
Theorem
pack_c_b_2_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
=
decode_b
(
ap
(
pack_c_b
x0
x1
x2
)
2
)
x3
x4
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
pack_c_b_inj
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
pack_c_b
x0
x2
x4
=
pack_c_b
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
x7
∈
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Param
iff
iff
:
ο
→
ο
→
ο
Known
encode_b_ext
encode_b_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
encode_b
x0
x1
=
encode_b
x0
x2
Known
encode_c_ext
encode_c_ext
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
x4
∈
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
encode_c
x0
x1
=
encode_c
x0
x2
Theorem
pack_c_b_ext
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x0
)
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x4
x5
x6
)
⟶
pack_c_b
x0
x1
x3
=
pack_c_b
x0
x2
x4
(proof)
Definition
struct_c_b
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x4
x5
x6
∈
x2
)
⟶
x1
(
pack_c_b
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_c_b_I
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
)
⟶
struct_c_b
(
pack_c_b
x0
x1
x2
)
(proof)
Theorem
pack_struct_c_b_E2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
struct_c_b
(
pack_c_b
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
(proof)
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
struct_c_b_eta
:
∀ x0 .
struct_c_b
x0
⟶
x0
=
pack_c_b
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(proof)
Definition
unpack_c_b_i
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→ ι
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
Theorem
unpack_c_b_i_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x3
x6
x7
=
x5
x6
x7
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_c_b_i
(
pack_c_b
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_c_b_o
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→ ο
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
Theorem
unpack_c_b_o_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x3
x6
x7
=
x5
x6
x7
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_c_b_o
(
pack_c_b
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
pack_c_u
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_c
x0
x1
)
(
lam
x0
x2
)
)
)
Theorem
pack_c_u_0_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
x0
=
pack_c_u
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_c_u_0_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
x0
=
ap
(
pack_c_u
x0
x1
x2
)
0
(proof)
Theorem
pack_c_u_1_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
x0
=
pack_c_u
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
x5
∈
x1
)
⟶
x2
x4
=
decode_c
(
ap
x0
1
)
x4
(proof)
Theorem
pack_c_u_1_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
x4
∈
x0
)
⟶
x1
x3
=
decode_c
(
ap
(
pack_c_u
x0
x1
x2
)
1
)
x3
(proof)
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Theorem
pack_c_u_2_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
x0
=
pack_c_u
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
x3
x4
=
ap
(
ap
x0
2
)
x4
(proof)
Theorem
pack_c_u_2_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
ap
(
ap
(
pack_c_u
x0
x1
x2
)
2
)
x3
(proof)
Theorem
pack_c_u_inj
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
pack_c_u
x0
x2
x4
=
pack_c_u
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
x7
∈
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
x6
∈
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
pack_c_u_ext
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x0
)
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x5
=
x4
x5
)
⟶
pack_c_u
x0
x1
x3
=
pack_c_u
x0
x2
x4
(proof)
Definition
struct_c_u
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
x4
x5
∈
x2
)
⟶
x1
(
pack_c_u
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_c_u_I
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
struct_c_u
(
pack_c_u
x0
x1
x2
)
(proof)
Theorem
pack_struct_c_u_E2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
struct_c_u
(
pack_c_u
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
(proof)
Theorem
struct_c_u_eta
:
∀ x0 .
struct_c_u
x0
⟶
x0
=
pack_c_u
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
(proof)
Definition
unpack_c_u_i
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→ ι
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
Theorem
unpack_c_u_i_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_c_u_i
(
pack_c_u
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_c_u_o
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→ ο
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
Theorem
unpack_c_u_o_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_c_u_o
(
pack_c_u
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
encode_r
encode_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
pack_c_r
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ο
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_c
x0
x1
)
(
encode_r
x0
x2
)
)
)
Theorem
pack_c_r_0_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
x0
=
pack_c_r
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_c_r_0_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 x3 :
ι →
ι → ο
.
x3
x0
(
ap
(
pack_c_r
x0
x1
x2
)
0
)
⟶
x3
(
ap
(
pack_c_r
x0
x1
x2
)
0
)
x0
(proof)
Theorem
pack_c_r_1_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
x0
=
pack_c_r
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
x5
∈
x1
)
⟶
x2
x4
=
decode_c
(
ap
x0
1
)
x4
(proof)
Theorem
pack_c_r_1_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
x4
∈
x0
)
⟶
x1
x3
=
decode_c
(
ap
(
pack_c_r
x0
x1
x2
)
1
)
x3
(proof)
Param
decode_r
decode_r
:
ι
→
ι
→
ι
→
ο
Known
decode_encode_r
decode_encode_r
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_r
(
encode_r
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
pack_c_r_2_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
x0
=
pack_c_r
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x3
x4
x5
=
decode_r
(
ap
x0
2
)
x4
x5
(proof)
Theorem
pack_c_r_2_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
=
decode_r
(
ap
(
pack_c_r
x0
x1
x2
)
2
)
x3
x4
(proof)
Theorem
pack_c_r_inj
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ο
.
pack_c_r
x0
x2
x4
=
pack_c_r
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
x7
∈
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Known
encode_r_ext
encode_r_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
encode_r
x0
x1
=
encode_r
x0
x2
Theorem
pack_c_r_ext
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x0
)
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
iff
(
x3
x5
x6
)
(
x4
x5
x6
)
)
⟶
pack_c_r
x0
x1
x3
=
pack_c_r
x0
x2
x4
(proof)
Definition
struct_c_r
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ο
.
x1
(
pack_c_r
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_c_r_I
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
struct_c_r
(
pack_c_r
x0
x1
x2
)
(proof)
Theorem
struct_c_r_eta
:
∀ x0 .
struct_c_r
x0
⟶
x0
=
pack_c_r
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_r
(
ap
x0
2
)
)
(proof)
Definition
unpack_c_r_i
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_r
(
ap
x0
2
)
)
Theorem
unpack_c_r_i_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_c_r_i
(
pack_c_r
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_c_r_o
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_r
(
ap
x0
2
)
)
Theorem
unpack_c_r_o_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_c_r_o
(
pack_c_r
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
pack_c_p
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ο
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_c
x0
x1
)
(
Sep
x0
x2
)
)
)
Theorem
pack_c_p_0_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
x0
=
pack_c_p
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_c_p_0_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
x0
=
ap
(
pack_c_p
x0
x1
x2
)
0
(proof)
Theorem
pack_c_p_1_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
x0
=
pack_c_p
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
x5
∈
x1
)
⟶
x2
x4
=
decode_c
(
ap
x0
1
)
x4
(proof)
Theorem
pack_c_p_1_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
x4
∈
x0
)
⟶
x1
x3
=
decode_c
(
ap
(
pack_c_p
x0
x1
x2
)
1
)
x3
(proof)
Param
decode_p
decode_p
:
ι
→
ι
→
ο
Known
decode_encode_p
decode_encode_p
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
decode_p
(
Sep
x0
x1
)
x2
=
x1
x2
Theorem
pack_c_p_2_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
x0
=
pack_c_p
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
x3
x4
=
decode_p
(
ap
x0
2
)
x4
(proof)
Theorem
pack_c_p_2_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
decode_p
(
ap
(
pack_c_p
x0
x1
x2
)
2
)
x3
(proof)
Theorem
pack_c_p_inj
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ο
.
pack_c_p
x0
x2
x4
=
pack_c_p
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
x7
∈
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
x6
∈
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
encode_p_ext
encode_p_ext
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
Sep
x0
x1
=
Sep
x0
x2
Theorem
pack_c_p_ext
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x0
)
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
iff
(
x3
x5
)
(
x4
x5
)
)
⟶
pack_c_p
x0
x1
x3
=
pack_c_p
x0
x2
x4
(proof)
Definition
struct_c_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ο
.
x1
(
pack_c_p
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_c_p_I
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
struct_c_p
(
pack_c_p
x0
x1
x2
)
(proof)
Theorem
struct_c_p_eta
:
∀ x0 .
struct_c_p
x0
⟶
x0
=
pack_c_p
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_p
(
ap
x0
2
)
)
(proof)
Definition
unpack_c_p_i
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ι
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_p
(
ap
x0
2
)
)
Theorem
unpack_c_p_i_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x6
∈
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_c_p_i
(
pack_c_p
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_c_p_o
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
decode_p
(
ap
x0
2
)
)
Theorem
unpack_c_p_o_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x6
∈
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_c_p_o
(
pack_c_p
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
pack_c_e
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 .
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_c
x0
x1
)
x2
)
)
Theorem
pack_c_e_0_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
x0
=
pack_c_e
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_c_e_0_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
x0
=
ap
(
pack_c_e
x0
x1
x2
)
0
(proof)
Theorem
pack_c_e_1_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
x0
=
pack_c_e
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
x5
∈
x1
)
⟶
x2
x4
=
decode_c
(
ap
x0
1
)
x4
(proof)
Theorem
pack_c_e_1_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
x4
∈
x0
)
⟶
x1
x3
=
decode_c
(
ap
(
pack_c_e
x0
x1
x2
)
1
)
x3
(proof)
Theorem
pack_c_e_2_eq
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
x0
=
pack_c_e
x1
x2
x3
⟶
x3
=
ap
x0
2
(proof)
Theorem
pack_c_e_2_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
x2
=
ap
(
pack_c_e
x0
x1
x2
)
2
(proof)
Theorem
pack_c_e_inj
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 .
pack_c_e
x0
x2
x4
=
pack_c_e
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
x7
∈
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
x4
=
x5
)
(proof)
Theorem
pack_c_e_ext
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
(
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
x5
∈
x0
)
⟶
iff
(
x1
x4
)
(
x2
x4
)
)
⟶
pack_c_e
x0
x1
x3
=
pack_c_e
x0
x2
x3
(proof)
Definition
struct_c_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 .
x4
∈
x2
⟶
x1
(
pack_c_e
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_c_e_I
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
x2
∈
x0
⟶
struct_c_e
(
pack_c_e
x0
x1
x2
)
(proof)
Theorem
pack_struct_c_e_E2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
struct_c_e
(
pack_c_e
x0
x1
x2
)
⟶
x2
∈
x0
(proof)
Theorem
struct_c_e_eta
:
∀ x0 .
struct_c_e
x0
⟶
x0
=
pack_c_e
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
ap
x0
2
)
(proof)
Definition
unpack_c_e_i
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
ι → ι
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
ap
x0
2
)
Theorem
unpack_c_e_i_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
unpack_c_e_i
(
pack_c_e
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_c_e_o
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
ι → ο
.
x1
(
ap
x0
0
)
(
decode_c
(
ap
x0
1
)
)
(
ap
x0
2
)
Theorem
unpack_c_e_o_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
x6
∈
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
unpack_c_e_o
(
pack_c_e
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
previous assets