Search for blocks/addresses/...

Proofgold Address

address
PUhPTrVALAoCvkoeFToN3HMa3uBUyXFcPLg
total
0
mg
-
conjpub
-
current assets
b49d1../ee80f.. bday: 36376 doc published by PrCmT..
Known df_vrgp__df_cmn__df_abl__df_cyg__df_dprd__df_dpj__df_mgp__df_ur__df_srg__df_ring__df_cring__df_oppr__df_dvdsr__df_unit__df_irred__df_invr__df_dvr__df_rprm : ∀ x0 : ο . (wceq cvrgp (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cv x1) (λ x2 . cec (cs1 (cop (cv x2) c0)) (cfv (cv x1) cefg))))wceq ccmn (crab (λ x1 . wral (λ x2 . wral (λ x3 . wceq (co (cv x2) (cv x3) (cfv (cv x1) cplusg)) (co (cv x3) (cv x2) (cfv (cv x1) cplusg))) (λ x3 . cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs)) (λ x1 . cmnd))wceq cabl (cin cgrp ccmn)wceq ccyg (crab (λ x1 . wrex (λ x2 . wceq (crn (cmpt (λ x3 . cz) (λ x3 . co (cv x3) (cv x2) (cfv (cv x1) cmg)))) (cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs)) (λ x1 . cgrp))wceq cdprd (cmpt2 (λ x1 x2 . cgrp) (λ x1 x2 . cab (λ x3 . wa (wf (cdm (cv x3)) (cfv (cv x1) csubg) (cv x3)) (wral (λ x4 . wa (wral (λ x5 . wss (cfv (cv x4) (cv x3)) (cfv (cfv (cv x5) (cv x3)) (cfv (cv x1) ccntz))) (λ x5 . cdif (cdm (cv x3)) (csn (cv x4)))) (wceq (cin (cfv (cv x4) (cv x3)) (cfv (cuni (cima (cv x3) (cdif (cdm (cv x3)) (csn (cv x4))))) (cfv (cfv (cv x1) csubg) cmrc))) (csn (cfv (cv x1) c0g)))) (λ x4 . cdm (cv x3))))) (λ x1 x2 . crn (cmpt (λ x3 . crab (λ x4 . wbr (cv x4) (cfv (cv x1) c0g) cfsupp) (λ x4 . cixp (λ x5 . cdm (cv x2)) (λ x5 . cfv (cv x5) (cv x2)))) (λ x3 . co (cv x1) (cv x3) cgsu))))wceq cdpj (cmpt2 (λ x1 x2 . cgrp) (λ x1 x2 . cima (cdm cdprd) (csn (cv x1))) (λ x1 x2 . cmpt (λ x3 . cdm (cv x2)) (λ x3 . co (cfv (cv x3) (cv x2)) (co (cv x1) (cres (cv x2) (cdif (cdm (cv x2)) (csn (cv x3)))) cdprd) (cfv (cv x1) cpj1))))wceq cmgp (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (cop (cfv cnx cplusg) (cfv (cv x1) cmulr)) csts))wceq cur (ccom c0g cmgp)wceq csrg (crab (λ x1 . wa (wcel (cfv (cv x1) cmgp) cmnd) (wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wsbc (λ x5 . wral (λ x6 . wa (wral (λ x7 . wral (λ x8 . wa (wceq (co (cv x6) (co (cv x7) (cv x8) (cv x3)) (cv x4)) (co (co (cv x6) (cv x7) (cv x4)) (co (cv x6) (cv x8) (cv x4)) (cv x3))) (wceq (co (co (cv x6) (cv x7) (cv x3)) (cv x8) (cv x4)) (co (co (cv x6) (cv x8) (cv x4)) (co (cv x7) (cv x8) (cv x4)) (cv x3)))) (λ x8 . cv x2)) (λ x7 . cv x2)) (wa (wceq (co (cv x5) (cv x6) (cv x4)) (cv x5)) (wceq (co (cv x6) (cv x5) (cv x4)) (cv x5)))) (λ x6 . cv x2)) (cfv (cv x1) c0g)) (cfv (cv x1) cmulr)) (cfv (cv x1) cplusg)) (cfv (cv x1) cbs))) (λ x1 . ccmn))wceq crg (crab (λ x1 . wa (wcel (cfv (cv x1) cmgp) cmnd) (wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wral (λ x5 . wral (λ x6 . wral (λ x7 . wa (wceq (co (cv x5) (co (cv x6) (cv x7) (cv x3)) (cv x4)) (co (co (cv x5) (cv x6) (cv x4)) (co (cv x5) (cv x7) (cv x4)) (cv x3))) (wceq (co (co (cv x5) (cv x6) (cv x3)) (cv x7) (cv x4)) (co (co (cv x5) (cv x7) (cv x4)) (co (cv x6) (cv x7) (cv x4)) (cv x3)))) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2)) (cfv (cv x1) cmulr)) (cfv (cv x1) cplusg)) (cfv (cv x1) cbs))) (λ x1 . cgrp))wceq ccrg (crab (λ x1 . wcel (cfv (cv x1) cmgp) ccmn) (λ x1 . crg))wceq coppr (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (cop (cfv cnx cmulr) (ctpos (cfv (cv x1) cmulr))) csts))wceq cdsr (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wcel (cv x2) (cfv (cv x1) cbs)) (wrex (λ x4 . wceq (co (cv x4) (cv x2) (cfv (cv x1) cmulr)) (cv x3)) (λ x4 . cfv (cv x1) cbs)))))wceq cui (cmpt (λ x1 . cvv) (λ x1 . cima (ccnv (cin (cfv (cv x1) cdsr) (cfv (cfv (cv x1) coppr) cdsr))) (csn (cfv (cv x1) cur))))wceq cir (cmpt (λ x1 . cvv) (λ x1 . csb (cdif (cfv (cv x1) cbs) (cfv (cv x1) cui)) (λ x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wne (co (cv x4) (cv x5) (cfv (cv x1) cmulr)) (cv x3)) (λ x5 . cv x2)) (λ x4 . cv x2)) (λ x3 . cv x2))))wceq cinvr (cmpt (λ x1 . cvv) (λ x1 . cfv (co (cfv (cv x1) cmgp) (cfv (cv x1) cui) cress) cminusg))wceq cdvr (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . cfv (cv x1) cui) (λ x2 x3 . co (cv x2) (cfv (cv x3) (cfv (cv x1) cinvr)) (cfv (cv x1) cmulr))))wceq crpm (cmpt (λ x1 . cvv) (λ x1 . csb (cfv (cv x1) cbs) (λ x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wsbc (λ x6 . wbr (cv x3) (co (cv x4) (cv x5) (cfv (cv x1) cmulr)) (cv x6)wo (wbr (cv x3) (cv x4) (cv x6)) (wbr (cv x3) (cv x5) (cv x6))) (cfv (cv x1) cdsr)) (λ x5 . cv x2)) (λ x4 . cv x2)) (λ x3 . cdif (cv x2) (cun (cfv (cv x1) cui) (csn (cfv (cv x1) c0g)))))))x0)x0
Theorem df_vrgp : wceq cvrgp (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cv x0) (λ x1 . cec (cs1 (cop (cv x1) c0)) (cfv (cv x0) cefg)))) (proof)
Theorem df_cmn : wceq ccmn (crab (λ x0 . wral (λ x1 . wral (λ x2 . wceq (co (cv x1) (cv x2) (cfv (cv x0) cplusg)) (co (cv x2) (cv x1) (cfv (cv x0) cplusg))) (λ x2 . cfv (cv x0) cbs)) (λ x1 . cfv (cv x0) cbs)) (λ x0 . cmnd)) (proof)
Theorem df_abl : wceq cabl (cin cgrp ccmn) (proof)
Theorem df_cyg : wceq ccyg (crab (λ x0 . wrex (λ x1 . wceq (crn (cmpt (λ x2 . cz) (λ x2 . co (cv x2) (cv x1) (cfv (cv x0) cmg)))) (cfv (cv x0) cbs)) (λ x1 . cfv (cv x0) cbs)) (λ x0 . cgrp)) (proof)
Theorem df_dprd : wceq cdprd (cmpt2 (λ x0 x1 . cgrp) (λ x0 x1 . cab (λ x2 . wa (wf (cdm (cv x2)) (cfv (cv x0) csubg) (cv x2)) (wral (λ x3 . wa (wral (λ x4 . wss (cfv (cv x3) (cv x2)) (cfv (cfv (cv x4) (cv x2)) (cfv (cv x0) ccntz))) (λ x4 . cdif (cdm (cv x2)) (csn (cv x3)))) (wceq (cin (cfv (cv x3) (cv x2)) (cfv (cuni (cima (cv x2) (cdif (cdm (cv x2)) (csn (cv x3))))) (cfv (cfv (cv x0) csubg) cmrc))) (csn (cfv (cv x0) c0g)))) (λ x3 . cdm (cv x2))))) (λ x0 x1 . crn (cmpt (λ x2 . crab (λ x3 . wbr (cv x3) (cfv (cv x0) c0g) cfsupp) (λ x3 . cixp (λ x4 . cdm (cv x1)) (λ x4 . cfv (cv x4) (cv x1)))) (λ x2 . co (cv x0) (cv x2) cgsu)))) (proof)
Theorem df_dpj : wceq cdpj (cmpt2 (λ x0 x1 . cgrp) (λ x0 x1 . cima (cdm cdprd) (csn (cv x0))) (λ x0 x1 . cmpt (λ x2 . cdm (cv x1)) (λ x2 . co (cfv (cv x2) (cv x1)) (co (cv x0) (cres (cv x1) (cdif (cdm (cv x1)) (csn (cv x2)))) cdprd) (cfv (cv x0) cpj1)))) (proof)
Theorem df_mgp : wceq cmgp (cmpt (λ x0 . cvv) (λ x0 . co (cv x0) (cop (cfv cnx cplusg) (cfv (cv x0) cmulr)) csts)) (proof)
Theorem df_ur : wceq cur (ccom c0g cmgp) (proof)
Theorem df_srg : wceq csrg (crab (λ x0 . wa (wcel (cfv (cv x0) cmgp) cmnd) (wsbc (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wral (λ x5 . wa (wral (λ x6 . wral (λ x7 . wa (wceq (co (cv x5) (co (cv x6) (cv x7) (cv x2)) (cv x3)) (co (co (cv x5) (cv x6) (cv x3)) (co (cv x5) (cv x7) (cv x3)) (cv x2))) (wceq (co (co (cv x5) (cv x6) (cv x2)) (cv x7) (cv x3)) (co (co (cv x5) (cv x7) (cv x3)) (co (cv x6) (cv x7) (cv x3)) (cv x2)))) (λ x7 . cv x1)) (λ x6 . cv x1)) (wa (wceq (co (cv x4) (cv x5) (cv x3)) (cv x4)) (wceq (co (cv x5) (cv x4) (cv x3)) (cv x4)))) (λ x5 . cv x1)) (cfv (cv x0) c0g)) (cfv (cv x0) cmulr)) (cfv (cv x0) cplusg)) (cfv (cv x0) cbs))) (λ x0 . ccmn)) (proof)
Theorem df_ring : wceq crg (crab (λ x0 . wa (wcel (cfv (cv x0) cmgp) cmnd) (wsbc (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wral (λ x5 . wral (λ x6 . wa (wceq (co (cv x4) (co (cv x5) (cv x6) (cv x2)) (cv x3)) (co (co (cv x4) (cv x5) (cv x3)) (co (cv x4) (cv x6) (cv x3)) (cv x2))) (wceq (co (co (cv x4) (cv x5) (cv x2)) (cv x6) (cv x3)) (co (co (cv x4) (cv x6) (cv x3)) (co (cv x5) (cv x6) (cv x3)) (cv x2)))) (λ x6 . cv x1)) (λ x5 . cv x1)) (λ x4 . cv x1)) (cfv (cv x0) cmulr)) (cfv (cv x0) cplusg)) (cfv (cv x0) cbs))) (λ x0 . cgrp)) (proof)
Theorem df_cring : wceq ccrg (crab (λ x0 . wcel (cfv (cv x0) cmgp) ccmn) (λ x0 . crg)) (proof)
Theorem df_oppr : wceq coppr (cmpt (λ x0 . cvv) (λ x0 . co (cv x0) (cop (cfv cnx cmulr) (ctpos (cfv (cv x0) cmulr))) csts)) (proof)
Theorem df_dvdsr : wceq cdsr (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . wa (wcel (cv x1) (cfv (cv x0) cbs)) (wrex (λ x3 . wceq (co (cv x3) (cv x1) (cfv (cv x0) cmulr)) (cv x2)) (λ x3 . cfv (cv x0) cbs))))) (proof)
Theorem df_unit : wceq cui (cmpt (λ x0 . cvv) (λ x0 . cima (ccnv (cin (cfv (cv x0) cdsr) (cfv (cfv (cv x0) coppr) cdsr))) (csn (cfv (cv x0) cur)))) (proof)
Theorem df_irred : wceq cir (cmpt (λ x0 . cvv) (λ x0 . csb (cdif (cfv (cv x0) cbs) (cfv (cv x0) cui)) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wne (co (cv x3) (cv x4) (cfv (cv x0) cmulr)) (cv x2)) (λ x4 . cv x1)) (λ x3 . cv x1)) (λ x2 . cv x1)))) (proof)
Theorem df_invr : wceq cinvr (cmpt (λ x0 . cvv) (λ x0 . cfv (co (cfv (cv x0) cmgp) (cfv (cv x0) cui) cress) cminusg)) (proof)
Theorem df_dvr : wceq cdvr (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cfv (cv x0) cbs) (λ x1 x2 . cfv (cv x0) cui) (λ x1 x2 . co (cv x1) (cfv (cv x2) (cfv (cv x0) cinvr)) (cfv (cv x0) cmulr)))) (proof)
Theorem df_rprm : wceq crpm (cmpt (λ x0 . cvv) (λ x0 . csb (cfv (cv x0) cbs) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wsbc (λ x5 . wbr (cv x2) (co (cv x3) (cv x4) (cfv (cv x0) cmulr)) (cv x5)wo (wbr (cv x2) (cv x3) (cv x5)) (wbr (cv x2) (cv x4) (cv x5))) (cfv (cv x0) cdsr)) (λ x4 . cv x1)) (λ x3 . cv x1)) (λ x2 . cdif (cv x1) (cun (cfv (cv x0) cui) (csn (cfv (cv x0) c0g))))))) (proof)

previous assets