Search for blocks/addresses/...

Proofgold Address

address
PUhtR8RjNrekuFPceR6vj6ZFGcanedudiYP
total
0
mg
-
conjpub
-
current assets
6d080../d872e.. bday: 28142 doc published by PrQUS..
Param nat_pnat_p : ιο
Param ordsuccordsucc : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Param SingSing : ιι
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known In_0_1In_0_1 : 01
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known SingISingI : ∀ x0 . x0Sing x0
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Theorem not_TransSet_Sing_tagnnot_TransSet_Sing_tagn : ∀ x0 . nat_p x01x0not (TransSet (Sing x0)) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Theorem not_ordinal_Sing_tagnnot_ordinal_Sing_tagn : ∀ x0 . nat_p x01x0not (ordinal (Sing x0)) (proof)
Param binunionbinunion : ιιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Theorem c383e.. : ∀ x0 . nat_p x01x0∀ x1 . not (ordinal (SetAdjoin x1 (Sing x0))) (proof)
Definition nInnIn := λ x0 x1 . not (x0x1)
Theorem 1a4b4.. : ∀ x0 . nat_p x01x0∀ x1 x2 . ordinal x1nIn (SetAdjoin x2 (Sing x0)) x1 (proof)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Theorem 292f1.. : ∀ x0 . nat_p x01x0nIn (Sing x0) (Sing (Sing 1)) (proof)
Param SNoSNo : ιο
Param SNoLevSNoLev : ιι
Definition SNoElts_SNoElts_ := λ x0 . binunion x0 {SetAdjoin x1 (Sing 1)|x1 ∈ x0}
Param exactly1of2exactly1of2 : οοο
Definition SNo_SNo_ := λ x0 x1 . and (x1SNoElts_ x0) (∀ x2 . x2x0exactly1of2 (SetAdjoin x2 (Sing 1)x1) (x2x1))
Known SNoLev_propSNoLev_prop : ∀ x0 . SNo x0and (ordinal (SNoLev x0)) (SNo_ (SNoLev x0) x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem 3bbaa.. : ∀ x0 . nat_p x01x0∀ x1 x2 . SNo x1nIn (SetAdjoin x2 (Sing x0)) x1 (proof)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Theorem 799ec.. : ∀ x0 . nat_p x01x0∀ x1 x2 . SNo x1SNo x2∀ x3 . x3x1∀ x4 . x4x2SetAdjoin x3 (Sing x0) = SetAdjoin x4 (Sing x0)x3x4 (proof)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Theorem 8244d.. : ∀ x0 . nat_p x01x0∀ x1 x2 . SNo x1SNo x2∀ x3 . x3x1∀ x4 . x4x2SetAdjoin x3 (Sing x0) = SetAdjoin x4 (Sing x0)x3 = x4 (proof)
Definition e9c39.. := λ x0 x1 x2 . binunion x1 {SetAdjoin x3 (Sing x0)|x3 ∈ x2}
Theorem 71aee.. : ∀ x0 . nat_p x01x0∀ x1 x2 x3 x4 . SNo x1e9c39.. x0 x1 x2 = e9c39.. x0 x3 x4x1x3 (proof)
Theorem 0efc6.. : ∀ x0 . nat_p x01x0∀ x1 x2 x3 x4 . SNo x1SNo x3e9c39.. x0 x1 x2 = e9c39.. x0 x3 x4x1 = x3 (proof)
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem 8e0ee.. : ∀ x0 . nat_p x01x0∀ x1 x2 x3 x4 . SNo x2SNo x3SNo x4e9c39.. x0 x1 x2 = e9c39.. x0 x3 x4x2x4 (proof)
Theorem 37675.. : ∀ x0 . nat_p x01x0∀ x1 x2 x3 x4 . SNo x1SNo x2SNo x3SNo x4e9c39.. x0 x1 x2 = e9c39.. x0 x3 x4x2 = x4 (proof)
Known Repl_EmptyRepl_Empty : ∀ x0 : ι → ι . prim5 0 x0 = 0
Known binunion_idrbinunion_idr : ∀ x0 . binunion x0 0 = x0
Theorem 3d28a.. : ∀ x0 . nat_p x01x0∀ x1 . e9c39.. x0 x1 0 = x1 (proof)
Definition ad280.. := e9c39.. 2
Known nat_2nat_2 : nat_p 2
Known In_1_2In_1_2 : 12
Theorem 43bcd.. : ∀ x0 . ad280.. x0 0 = x0 (proof)
Theorem 8ae5d.. : ∀ x0 x1 x2 x3 . SNo x0SNo x2ad280.. x0 x1 = ad280.. x2 x3x0 = x2 (proof)
Theorem 943f5.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3ad280.. x0 x1 = ad280.. x2 x3x1 = x3 (proof)
Definition c7ce4.. := λ x0 . ∀ x1 : ο . (∀ x2 . and (SNo x2) (∀ x3 : ο . (∀ x4 . and (SNo x4) (x0 = ad280.. x2 x4)x3)x3)x1)x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem e4080.. : ∀ x0 x1 . SNo x0SNo x1c7ce4.. (ad280.. x0 x1) (proof)
Theorem 3577c.. : ∀ x0 . c7ce4.. x0∀ x1 : ι → ο . (∀ x2 x3 . SNo x2SNo x3x0 = ad280.. x2 x3x1 (ad280.. x2 x3))x1 x0 (proof)
Known SNo_0SNo_0 : SNo 0
Theorem 2c33a.. : ∀ x0 . SNo x0c7ce4.. x0 (proof)
Theorem Sing_injSing_inj : ∀ x0 x1 . Sing x0 = Sing x1x0 = x1 (proof)
Definition 68498.. := λ x0 x1 . ∀ x2 . x2x1∀ x3 : ο . (∀ x4 . and (SNo x4) (or (x2x4) (∀ x5 : ο . (∀ x6 . and (x6x4) (∀ x7 : ο . (∀ x8 . and (x8x0) (and (1x8) (x2 = SetAdjoin x6 (Sing x8)))x7)x7)x5)x5))x3)x3
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Theorem f4add.. : ∀ x0 . nat_p x01x0∀ x1 . (x0 = x1∀ x2 : ο . x2)∀ x2 x3 x4 . SNo x3x4x3SetAdjoin x2 (Sing x0) = SetAdjoin x4 (Sing x1)∀ x5 : ο . x5 (proof)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem 23602.. : ∀ x0 . nat_p x01x0∀ x1 x2 . 68498.. x0 x1SNo x268498.. (ordsucc x0) (binunion x1 {SetAdjoin x3 (Sing x0)|x3 ∈ x2}) (proof)
Theorem a2c24.. : ∀ x0 . nat_p x01x0∀ x1 x2 x3 x4 . 68498.. x0 x1binunion x1 {SetAdjoin x6 (Sing x0)|x6 ∈ x3} = binunion x2 {SetAdjoin x6 (Sing x0)|x6 ∈ x4}x1x2 (proof)
Theorem 90357.. : ∀ x0 . nat_p x01x0∀ x1 x2 x3 x4 . 68498.. x0 x168498.. x0 x2binunion x1 {SetAdjoin x6 (Sing x0)|x6 ∈ x3} = binunion x2 {SetAdjoin x6 (Sing x0)|x6 ∈ x4}x1 = x2 (proof)
Theorem 3e83d.. : ∀ x0 . nat_p x01x0∀ x1 x2 x3 x4 . 68498.. x0 x2SNo x3SNo x4binunion x1 {SetAdjoin x6 (Sing x0)|x6 ∈ x3} = binunion x2 {SetAdjoin x6 (Sing x0)|x6 ∈ x4}x3x4 (proof)
Theorem f57d5.. : ∀ x0 . nat_p x01x0∀ x1 x2 x3 x4 . 68498.. x0 x168498.. x0 x2SNo x3SNo x4binunion x1 {SetAdjoin x6 (Sing x0)|x6 ∈ x3} = binunion x2 {SetAdjoin x6 (Sing x0)|x6 ∈ x4}x3 = x4 (proof)
Theorem 42ea0.. : ∀ x0 x1 . SNo x068498.. x1 x0 (proof)
Theorem bfcc8.. : ∀ x0 x1 . SNo x0SNo x168498.. 3 (ad280.. x0 x1) (proof)
Definition f4b0e.. := λ x0 x1 x2 x3 . binunion (binunion (binunion x0 {SetAdjoin x4 (Sing 2)|x4 ∈ x1}) {SetAdjoin x4 (Sing 3)|x4 ∈ x2}) {SetAdjoin x4 (Sing 4)|x4 ∈ x3}
Known nat_4nat_4 : nat_p 4
Known In_1_4In_1_4 : 14
Known nat_3nat_3 : nat_p 3
Known In_1_3In_1_3 : 13
Theorem 74b2d.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x368498.. 5 (f4b0e.. x0 x1 x2 x3) (proof)
Theorem 84fad.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x4SNo x5SNo x6f4b0e.. x0 x1 x2 x3 = f4b0e.. x4 x5 x6 x7x0 = x4 (proof)
Theorem aa1e8.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7f4b0e.. x0 x1 x2 x3 = f4b0e.. x4 x5 x6 x7x1 = x5 (proof)
Theorem 04ead.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7f4b0e.. x0 x1 x2 x3 = f4b0e.. x4 x5 x6 x7x2 = x6 (proof)
Theorem 57cf4.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7f4b0e.. x0 x1 x2 x3 = f4b0e.. x4 x5 x6 x7x3 = x7 (proof)
Definition 8c189.. := λ x0 . ∀ x1 : ο . (∀ x2 . and (SNo x2) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (x0 = f4b0e.. x2 x4 x6 x8)x7)x7)x5)x5)x3)x3)x1)x1
Theorem 70bda.. : ∀ x0 x1 x2 . f4b0e.. x0 x1 x2 0 = binunion (binunion x0 {SetAdjoin x4 (Sing 2)|x4 ∈ x1}) {SetAdjoin x4 (Sing 3)|x4 ∈ x2} (proof)
Theorem 27253.. : ∀ x0 x1 . f4b0e.. x0 x1 0 0 = ad280.. x0 x1 (proof)
Theorem fb499.. : ∀ x0 . f4b0e.. x0 0 0 0 = x0 (proof)
Theorem ca287.. : ∀ x0 . c7ce4.. x08c189.. x0 (proof)
Definition bbc71.. := λ x0 x1 x2 x3 x4 x5 x6 x7 . binunion (binunion (binunion (binunion (binunion (binunion (binunion x0 {SetAdjoin x8 (Sing 2)|x8 ∈ x1}) {SetAdjoin x8 (Sing 3)|x8 ∈ x2}) {SetAdjoin x8 (Sing 4)|x8 ∈ x3}) {SetAdjoin x8 (Sing 5)|x8 ∈ x4}) {SetAdjoin x8 (Sing 6)|x8 ∈ x5}) {SetAdjoin x8 (Sing 7)|x8 ∈ x6}) {SetAdjoin x8 (Sing 8)|x8 ∈ x7}
Known nat_8nat_8 : nat_p 8
Known In_1_8In_1_8 : 18
Known nat_7nat_7 : nat_p 7
Known In_1_7In_1_7 : 17
Known nat_6nat_6 : nat_p 6
Known In_1_6In_1_6 : 16
Known nat_5nat_5 : nat_p 5
Known In_1_5In_1_5 : 15
Theorem 0e211.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x768498.. 9 (bbc71.. x0 x1 x2 x3 x4 x5 x6 x7) (proof)
Theorem cca09.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x0 = x8 (proof)
Theorem babe8.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x1 = x9 (proof)
Theorem 6488e.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x2 = x10 (proof)
Theorem ad01a.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x3 = x11 (proof)
Theorem f4559.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x4 = x12 (proof)
Theorem f56fc.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x5 = x13 (proof)
Theorem 4a66b.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x6 = x14 (proof)
Theorem 7c302.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x7 = x15 (proof)
Definition 1eb0a.. := λ x0 . ∀ x1 : ο . (∀ x2 . and (SNo x2) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (∀ x15 : ο . (∀ x16 . and (SNo x16) (x0 = bbc71.. x2 x4 x6 x8 x10 x12 x14 x16)x15)x15)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1
Theorem b1d98.. : ∀ x0 x1 x2 x3 x4 x5 x6 . bbc71.. x0 x1 x2 x3 x4 x5 x6 0 = binunion (binunion (binunion (f4b0e.. x0 x1 x2 x3) {SetAdjoin x8 (Sing 5)|x8 ∈ x4}) {SetAdjoin x8 (Sing 6)|x8 ∈ x5}) {SetAdjoin x8 (Sing 7)|x8 ∈ x6} (proof)
Theorem 2e171.. : ∀ x0 x1 x2 x3 x4 x5 . bbc71.. x0 x1 x2 x3 x4 x5 0 0 = binunion (binunion (f4b0e.. x0 x1 x2 x3) {SetAdjoin x7 (Sing 5)|x7 ∈ x4}) {SetAdjoin x7 (Sing 6)|x7 ∈ x5} (proof)
Theorem 0fc47.. : ∀ x0 x1 x2 x3 x4 . bbc71.. x0 x1 x2 x3 x4 0 0 0 = binunion (f4b0e.. x0 x1 x2 x3) {SetAdjoin x6 (Sing 5)|x6 ∈ x4} (proof)
Theorem 3463c.. : ∀ x0 x1 x2 x3 . bbc71.. x0 x1 x2 x3 0 0 0 0 = f4b0e.. x0 x1 x2 x3 (proof)
Theorem b6032.. : ∀ x0 . 8c189.. x01eb0a.. x0 (proof)

previous assets