Search for blocks/addresses/...
Proofgold Asset
asset id
00a237e5728970178a05ac0b5e7fe79fc63d62f67a35db45d948ca0544da7b9e
asset hash
45382d9d712eb7c5966977f0225e22d1b174c4e773369535d17ffc417fe5fb7c
bday / block
36396
tx
3cbfb..
preasset
doc published by
PrCmT..
Known
ax_11_b__ax_12__ax_12_b__ax_13__ax_13_b__df_eu__df_mo__ax_ext__df_clab__df_clab_b__df_cleq__df_clel__df_nfc__df_ne__df_nel__df_ral__df_rex__df_reu
:
∀ x0 : ο .
(
(
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
x1
x3
)
⟶
∀ x2 x3 .
x1
x3
)
⟶
(
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 .
wceq
(
cv
x2
)
(
cv
x3
)
⟶
(
∀ x4 .
x1
x2
x4
)
⟶
∀ x4 .
wceq
(
cv
x4
)
(
cv
x3
)
⟶
x1
x4
x3
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
⟶
(
∀ x3 .
x1
x3
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x3
)
⟶
x1
x3
)
⟶
(
∀ x1 x2 x3 .
wn
(
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
wceq
(
cv
x1
)
(
cv
x2
)
⟶
∀ x4 .
wceq
(
cv
x1
)
(
cv
x2
)
)
⟶
(
∀ x1 x2 .
wn
(
wceq
(
cv
x2
)
(
cv
x2
)
)
⟶
wceq
(
cv
x2
)
(
cv
x1
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
weu
x1
)
(
wex
(
λ x2 .
∀ x3 .
wb
(
x1
x3
)
(
wceq
(
cv
x3
)
(
cv
x2
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wmo
x1
)
(
wex
x1
⟶
weu
x1
)
)
⟶
(
∀ x1 x2 .
(
∀ x3 .
wb
(
wcel
(
cv
x3
)
(
cv
x1
)
)
(
wcel
(
cv
x3
)
(
cv
x2
)
)
)
⟶
wceq
(
cv
x1
)
(
cv
x2
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
wb
(
wcel
(
cv
x2
)
(
cab
x1
)
)
(
wsb
x1
x2
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
wb
(
wcel
(
cv
x2
)
(
cab
x1
)
)
(
wsb
x1
x2
)
)
⟶
(
∀ x1 x2 :
ι →
ι →
ι → ο
.
(
∀ x3 x4 .
(
∀ x5 .
wb
(
wcel
(
cv
x5
)
(
cv
x3
)
)
(
wcel
(
cv
x5
)
(
cv
x4
)
)
)
⟶
wceq
(
cv
x3
)
(
cv
x4
)
)
⟶
∀ x3 x4 .
wb
(
wceq
(
x1
x3
x4
)
(
x2
x3
x4
)
)
(
∀ x5 .
wb
(
wcel
(
cv
x5
)
(
x1
x3
x4
)
)
(
wcel
(
cv
x5
)
(
x2
x3
x4
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wcel
x1
x2
)
(
wex
(
λ x3 .
wa
(
wceq
(
cv
x3
)
x1
)
(
wcel
(
cv
x3
)
x2
)
)
)
)
⟶
(
∀ x1 :
ι →
ι → ο
.
wb
(
wnfc
x1
)
(
∀ x2 .
wnf
(
λ x3 .
wcel
(
cv
x2
)
(
x1
x3
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wne
x1
x2
)
(
wn
(
wceq
x1
x2
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wnel
x1
x2
)
(
wn
(
wcel
x1
x2
)
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wb
(
wral
x1
x2
)
(
∀ x3 .
wcel
(
cv
x3
)
(
x2
x3
)
⟶
x1
x3
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wb
(
wrex
x1
x2
)
(
wex
(
λ x3 .
wa
(
wcel
(
cv
x3
)
(
x2
x3
)
)
(
x1
x3
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wb
(
wreu
x1
x2
)
(
weu
(
λ x3 .
wa
(
wcel
(
cv
x3
)
(
x2
x3
)
)
(
x1
x3
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
ax_11_b
:
∀ x0 :
ι → ο
.
(
∀ x1 x2 .
x0
x2
)
⟶
∀ x1 x2 .
x0
x2
(proof)
Theorem
ax_11d
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
wceq
(
cv
x1
)
(
cv
x2
)
⟶
(
∀ x3 .
x0
x1
x3
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
⟶
x0
x3
x2
(proof)
Theorem
ax_12_b
:
∀ x0 :
ι → ο
.
∀ x1 .
wceq
(
cv
x1
)
(
cv
x1
)
⟶
(
∀ x2 .
x0
x2
)
⟶
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
⟶
x0
x2
(proof)
Theorem
ax_13
:
∀ x0 x1 x2 .
wn
(
wceq
(
cv
x2
)
(
cv
x0
)
)
⟶
wceq
(
cv
x0
)
(
cv
x1
)
⟶
∀ x3 .
wceq
(
cv
x0
)
(
cv
x1
)
(proof)
Theorem
ax_13_b
:
∀ x0 x1 .
wn
(
wceq
(
cv
x1
)
(
cv
x1
)
)
⟶
wceq
(
cv
x1
)
(
cv
x0
)
⟶
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
(proof)
Theorem
df_eu
:
∀ x0 :
ι → ο
.
wb
(
weu
x0
)
(
wex
(
λ x1 .
∀ x2 .
wb
(
x0
x2
)
(
wceq
(
cv
x2
)
(
cv
x1
)
)
)
)
(proof)
Theorem
df_mo
:
∀ x0 :
ι → ο
.
wb
(
wmo
x0
)
(
wex
x0
⟶
weu
x0
)
(proof)
Theorem
ax_ext
:
∀ x0 x1 .
(
∀ x2 .
wb
(
wcel
(
cv
x2
)
(
cv
x0
)
)
(
wcel
(
cv
x2
)
(
cv
x1
)
)
)
⟶
wceq
(
cv
x0
)
(
cv
x1
)
(proof)
Theorem
df_clab_b
:
∀ x0 :
ι → ο
.
∀ x1 .
wb
(
wcel
(
cv
x1
)
(
cab
x0
)
)
(
wsb
x0
x1
)
(proof)
Theorem
df_clab_b
:
∀ x0 :
ι → ο
.
∀ x1 .
wb
(
wcel
(
cv
x1
)
(
cab
x0
)
)
(
wsb
x0
x1
)
(proof)
Theorem
df_cleq
:
∀ x0 x1 :
ι →
ι →
ι → ο
.
(
∀ x2 x3 .
(
∀ x4 .
wb
(
wcel
(
cv
x4
)
(
cv
x2
)
)
(
wcel
(
cv
x4
)
(
cv
x3
)
)
)
⟶
wceq
(
cv
x2
)
(
cv
x3
)
)
⟶
∀ x2 x3 .
wb
(
wceq
(
x0
x2
x3
)
(
x1
x2
x3
)
)
(
∀ x4 .
wb
(
wcel
(
cv
x4
)
(
x0
x2
x3
)
)
(
wcel
(
cv
x4
)
(
x1
x2
x3
)
)
)
(proof)
Theorem
df_clel
:
∀ x0 x1 :
ι → ο
.
wb
(
wcel
x0
x1
)
(
wex
(
λ x2 .
wa
(
wceq
(
cv
x2
)
x0
)
(
wcel
(
cv
x2
)
x1
)
)
)
(proof)
Theorem
df_nfc
:
∀ x0 :
ι →
ι → ο
.
wb
(
wnfc
x0
)
(
∀ x1 .
wnf
(
λ x2 .
wcel
(
cv
x1
)
(
x0
x2
)
)
)
(proof)
Theorem
df_ne
:
∀ x0 x1 :
ι → ο
.
wb
(
wne
x0
x1
)
(
wn
(
wceq
x0
x1
)
)
(proof)
Theorem
df_nel
:
∀ x0 x1 :
ι → ο
.
wb
(
wnel
x0
x1
)
(
wn
(
wcel
x0
x1
)
)
(proof)
Theorem
df_ral
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wb
(
wral
x0
x1
)
(
∀ x2 .
wcel
(
cv
x2
)
(
x1
x2
)
⟶
x0
x2
)
(proof)
Theorem
df_rex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wb
(
wrex
x0
x1
)
(
wex
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
x1
x2
)
)
(
x0
x2
)
)
)
(proof)
Theorem
df_reu
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wb
(
wreu
x0
x1
)
(
weu
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
x1
x2
)
)
(
x0
x2
)
)
)
(proof)