Search for blocks/addresses/...

Proofgold Asset

asset id
00a237e5728970178a05ac0b5e7fe79fc63d62f67a35db45d948ca0544da7b9e
asset hash
45382d9d712eb7c5966977f0225e22d1b174c4e773369535d17ffc417fe5fb7c
bday / block
36396
tx
3cbfb..
preasset
doc published by PrCmT..
Known ax_11_b__ax_12__ax_12_b__ax_13__ax_13_b__df_eu__df_mo__ax_ext__df_clab__df_clab_b__df_cleq__df_clel__df_nfc__df_ne__df_nel__df_ral__df_rex__df_reu : ∀ x0 : ο . ((∀ x1 : ι → ο . (∀ x2 x3 . x1 x3)∀ x2 x3 . x1 x3)(∀ x1 : ι → ι → ο . ∀ x2 x3 . wceq (cv x2) (cv x3)(∀ x4 . x1 x2 x4)∀ x4 . wceq (cv x4) (cv x3)x1 x4 x3)(∀ x1 : ι → ο . ∀ x2 . wceq (cv x2) (cv x2)(∀ x3 . x1 x3)∀ x3 . wceq (cv x3) (cv x3)x1 x3)(∀ x1 x2 x3 . wn (wceq (cv x3) (cv x1))wceq (cv x1) (cv x2)∀ x4 . wceq (cv x1) (cv x2))(∀ x1 x2 . wn (wceq (cv x2) (cv x2))wceq (cv x2) (cv x1)∀ x3 . wceq (cv x3) (cv x1))(∀ x1 : ι → ο . wb (weu x1) (wex (λ x2 . ∀ x3 . wb (x1 x3) (wceq (cv x3) (cv x2)))))(∀ x1 : ι → ο . wb (wmo x1) (wex x1weu x1))(∀ x1 x2 . (∀ x3 . wb (wcel (cv x3) (cv x1)) (wcel (cv x3) (cv x2)))wceq (cv x1) (cv x2))(∀ x1 : ι → ο . ∀ x2 . wb (wcel (cv x2) (cab x1)) (wsb x1 x2))(∀ x1 : ι → ο . ∀ x2 . wb (wcel (cv x2) (cab x1)) (wsb x1 x2))(∀ x1 x2 : ι → ι → ι → ο . (∀ x3 x4 . (∀ x5 . wb (wcel (cv x5) (cv x3)) (wcel (cv x5) (cv x4)))wceq (cv x3) (cv x4))∀ x3 x4 . wb (wceq (x1 x3 x4) (x2 x3 x4)) (∀ x5 . wb (wcel (cv x5) (x1 x3 x4)) (wcel (cv x5) (x2 x3 x4))))(∀ x1 x2 : ι → ο . wb (wcel x1 x2) (wex (λ x3 . wa (wceq (cv x3) x1) (wcel (cv x3) x2))))(∀ x1 : ι → ι → ο . wb (wnfc x1) (∀ x2 . wnf (λ x3 . wcel (cv x2) (x1 x3))))(∀ x1 x2 : ι → ο . wb (wne x1 x2) (wn (wceq x1 x2)))(∀ x1 x2 : ι → ο . wb (wnel x1 x2) (wn (wcel x1 x2)))(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wb (wral x1 x2) (∀ x3 . wcel (cv x3) (x2 x3)x1 x3))(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wb (wrex x1 x2) (wex (λ x3 . wa (wcel (cv x3) (x2 x3)) (x1 x3))))(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wb (wreu x1 x2) (weu (λ x3 . wa (wcel (cv x3) (x2 x3)) (x1 x3))))x0)x0
Theorem ax_11_b : ∀ x0 : ι → ο . (∀ x1 x2 . x0 x2)∀ x1 x2 . x0 x2 (proof)
Theorem ax_11d : ∀ x0 : ι → ι → ο . ∀ x1 x2 . wceq (cv x1) (cv x2)(∀ x3 . x0 x1 x3)∀ x3 . wceq (cv x3) (cv x2)x0 x3 x2 (proof)
Theorem ax_12_b : ∀ x0 : ι → ο . ∀ x1 . wceq (cv x1) (cv x1)(∀ x2 . x0 x2)∀ x2 . wceq (cv x2) (cv x2)x0 x2 (proof)
Theorem ax_13 : ∀ x0 x1 x2 . wn (wceq (cv x2) (cv x0))wceq (cv x0) (cv x1)∀ x3 . wceq (cv x0) (cv x1) (proof)
Theorem ax_13_b : ∀ x0 x1 . wn (wceq (cv x1) (cv x1))wceq (cv x1) (cv x0)∀ x2 . wceq (cv x2) (cv x0) (proof)
Theorem df_eu : ∀ x0 : ι → ο . wb (weu x0) (wex (λ x1 . ∀ x2 . wb (x0 x2) (wceq (cv x2) (cv x1)))) (proof)
Theorem df_mo : ∀ x0 : ι → ο . wb (wmo x0) (wex x0weu x0) (proof)
Theorem ax_ext : ∀ x0 x1 . (∀ x2 . wb (wcel (cv x2) (cv x0)) (wcel (cv x2) (cv x1)))wceq (cv x0) (cv x1) (proof)
Theorem df_clab_b : ∀ x0 : ι → ο . ∀ x1 . wb (wcel (cv x1) (cab x0)) (wsb x0 x1) (proof)
Theorem df_clab_b : ∀ x0 : ι → ο . ∀ x1 . wb (wcel (cv x1) (cab x0)) (wsb x0 x1) (proof)
Theorem df_cleq : ∀ x0 x1 : ι → ι → ι → ο . (∀ x2 x3 . (∀ x4 . wb (wcel (cv x4) (cv x2)) (wcel (cv x4) (cv x3)))wceq (cv x2) (cv x3))∀ x2 x3 . wb (wceq (x0 x2 x3) (x1 x2 x3)) (∀ x4 . wb (wcel (cv x4) (x0 x2 x3)) (wcel (cv x4) (x1 x2 x3))) (proof)
Theorem df_clel : ∀ x0 x1 : ι → ο . wb (wcel x0 x1) (wex (λ x2 . wa (wceq (cv x2) x0) (wcel (cv x2) x1))) (proof)
Theorem df_nfc : ∀ x0 : ι → ι → ο . wb (wnfc x0) (∀ x1 . wnf (λ x2 . wcel (cv x1) (x0 x2))) (proof)
Theorem df_ne : ∀ x0 x1 : ι → ο . wb (wne x0 x1) (wn (wceq x0 x1)) (proof)
Theorem df_nel : ∀ x0 x1 : ι → ο . wb (wnel x0 x1) (wn (wcel x0 x1)) (proof)
Theorem df_ral : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . wb (wral x0 x1) (∀ x2 . wcel (cv x2) (x1 x2)x0 x2) (proof)
Theorem df_rex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . wb (wrex x0 x1) (wex (λ x2 . wa (wcel (cv x2) (x1 x2)) (x0 x2))) (proof)
Theorem df_reu : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . wb (wreu x0 x1) (weu (λ x2 . wa (wcel (cv x2) (x1 x2)) (x0 x2))) (proof)