Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNrV..
/
75504..
PUeAY..
/
9bf7a..
vout
PrNrV..
/
d9127..
0.10 bars
TMQ75..
/
feb22..
ownership of
36d63..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKFN..
/
ad474..
ownership of
88fc0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKB2..
/
f4900..
ownership of
8bd82..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNvq..
/
ab0c7..
ownership of
ed716..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZDh..
/
23571..
ownership of
49253..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQp8..
/
9818e..
ownership of
fb9a0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWjE..
/
f28df..
ownership of
13165..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR44..
/
be34b..
ownership of
71fab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML66..
/
7df98..
ownership of
90d67..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPK1..
/
f1357..
ownership of
9ba6b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVqY..
/
6fb32..
ownership of
55da6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWYT..
/
3ef48..
ownership of
5b300..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN1m..
/
90d87..
ownership of
6b812..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd6c..
/
ace93..
ownership of
4bdc9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPpv..
/
decbd..
ownership of
29e77..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdbQ..
/
eb450..
ownership of
55b61..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQkt..
/
ac565..
ownership of
be481..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW7i..
/
214f2..
ownership of
31da9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQfi..
/
900d1..
ownership of
c4ade..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ2y..
/
5e5e4..
ownership of
c6613..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKwu..
/
f30ac..
ownership of
5c12d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVmY..
/
fb748..
ownership of
268a3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEuL..
/
33f91..
ownership of
ce9d9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEh4..
/
4bccb..
ownership of
6b863..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNWD..
/
1c026..
ownership of
8300b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMStu..
/
0c671..
ownership of
e4311..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYJ3..
/
13f72..
ownership of
ff153..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM15..
/
1534e..
ownership of
72ad3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJnG..
/
4b6e4..
ownership of
660eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYuA..
/
64d63..
ownership of
68ae8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd9C..
/
81287..
ownership of
ae3a5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ3Y..
/
f7ae0..
ownership of
59676..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa7u..
/
e7959..
ownership of
27426..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNRY..
/
ad1a2..
ownership of
6bfaa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUcqv..
/
00a23..
doc published by
PrCmT..
Known
ax_11_b__ax_12__ax_12_b__ax_13__ax_13_b__df_eu__df_mo__ax_ext__df_clab__df_clab_b__df_cleq__df_clel__df_nfc__df_ne__df_nel__df_ral__df_rex__df_reu
:
∀ x0 : ο .
(
(
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
x1
x3
)
⟶
∀ x2 x3 .
x1
x3
)
⟶
(
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 .
wceq
(
cv
x2
)
(
cv
x3
)
⟶
(
∀ x4 .
x1
x2
x4
)
⟶
∀ x4 .
wceq
(
cv
x4
)
(
cv
x3
)
⟶
x1
x4
x3
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
⟶
(
∀ x3 .
x1
x3
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x3
)
⟶
x1
x3
)
⟶
(
∀ x1 x2 x3 .
wn
(
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
wceq
(
cv
x1
)
(
cv
x2
)
⟶
∀ x4 .
wceq
(
cv
x1
)
(
cv
x2
)
)
⟶
(
∀ x1 x2 .
wn
(
wceq
(
cv
x2
)
(
cv
x2
)
)
⟶
wceq
(
cv
x2
)
(
cv
x1
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
weu
x1
)
(
wex
(
λ x2 .
∀ x3 .
wb
(
x1
x3
)
(
wceq
(
cv
x3
)
(
cv
x2
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wmo
x1
)
(
wex
x1
⟶
weu
x1
)
)
⟶
(
∀ x1 x2 .
(
∀ x3 .
wb
(
wcel
(
cv
x3
)
(
cv
x1
)
)
(
wcel
(
cv
x3
)
(
cv
x2
)
)
)
⟶
wceq
(
cv
x1
)
(
cv
x2
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
wb
(
wcel
(
cv
x2
)
(
cab
x1
)
)
(
wsb
x1
x2
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
wb
(
wcel
(
cv
x2
)
(
cab
x1
)
)
(
wsb
x1
x2
)
)
⟶
(
∀ x1 x2 :
ι →
ι →
ι → ο
.
(
∀ x3 x4 .
(
∀ x5 .
wb
(
wcel
(
cv
x5
)
(
cv
x3
)
)
(
wcel
(
cv
x5
)
(
cv
x4
)
)
)
⟶
wceq
(
cv
x3
)
(
cv
x4
)
)
⟶
∀ x3 x4 .
wb
(
wceq
(
x1
x3
x4
)
(
x2
x3
x4
)
)
(
∀ x5 .
wb
(
wcel
(
cv
x5
)
(
x1
x3
x4
)
)
(
wcel
(
cv
x5
)
(
x2
x3
x4
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wcel
x1
x2
)
(
wex
(
λ x3 .
wa
(
wceq
(
cv
x3
)
x1
)
(
wcel
(
cv
x3
)
x2
)
)
)
)
⟶
(
∀ x1 :
ι →
ι → ο
.
wb
(
wnfc
x1
)
(
∀ x2 .
wnf
(
λ x3 .
wcel
(
cv
x2
)
(
x1
x3
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wne
x1
x2
)
(
wn
(
wceq
x1
x2
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wnel
x1
x2
)
(
wn
(
wcel
x1
x2
)
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wb
(
wral
x1
x2
)
(
∀ x3 .
wcel
(
cv
x3
)
(
x2
x3
)
⟶
x1
x3
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wb
(
wrex
x1
x2
)
(
wex
(
λ x3 .
wa
(
wcel
(
cv
x3
)
(
x2
x3
)
)
(
x1
x3
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wb
(
wreu
x1
x2
)
(
weu
(
λ x3 .
wa
(
wcel
(
cv
x3
)
(
x2
x3
)
)
(
x1
x3
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
ax_11_b
:
∀ x0 :
ι → ο
.
(
∀ x1 x2 .
x0
x2
)
⟶
∀ x1 x2 .
x0
x2
(proof)
Theorem
ax_11d
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
wceq
(
cv
x1
)
(
cv
x2
)
⟶
(
∀ x3 .
x0
x1
x3
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
⟶
x0
x3
x2
(proof)
Theorem
ax_12_b
:
∀ x0 :
ι → ο
.
∀ x1 .
wceq
(
cv
x1
)
(
cv
x1
)
⟶
(
∀ x2 .
x0
x2
)
⟶
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
⟶
x0
x2
(proof)
Theorem
ax_13
:
∀ x0 x1 x2 .
wn
(
wceq
(
cv
x2
)
(
cv
x0
)
)
⟶
wceq
(
cv
x0
)
(
cv
x1
)
⟶
∀ x3 .
wceq
(
cv
x0
)
(
cv
x1
)
(proof)
Theorem
ax_13_b
:
∀ x0 x1 .
wn
(
wceq
(
cv
x1
)
(
cv
x1
)
)
⟶
wceq
(
cv
x1
)
(
cv
x0
)
⟶
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
(proof)
Theorem
df_eu
:
∀ x0 :
ι → ο
.
wb
(
weu
x0
)
(
wex
(
λ x1 .
∀ x2 .
wb
(
x0
x2
)
(
wceq
(
cv
x2
)
(
cv
x1
)
)
)
)
(proof)
Theorem
df_mo
:
∀ x0 :
ι → ο
.
wb
(
wmo
x0
)
(
wex
x0
⟶
weu
x0
)
(proof)
Theorem
ax_ext
:
∀ x0 x1 .
(
∀ x2 .
wb
(
wcel
(
cv
x2
)
(
cv
x0
)
)
(
wcel
(
cv
x2
)
(
cv
x1
)
)
)
⟶
wceq
(
cv
x0
)
(
cv
x1
)
(proof)
Theorem
df_clab_b
:
∀ x0 :
ι → ο
.
∀ x1 .
wb
(
wcel
(
cv
x1
)
(
cab
x0
)
)
(
wsb
x0
x1
)
(proof)
Theorem
df_clab_b
:
∀ x0 :
ι → ο
.
∀ x1 .
wb
(
wcel
(
cv
x1
)
(
cab
x0
)
)
(
wsb
x0
x1
)
(proof)
Theorem
df_cleq
:
∀ x0 x1 :
ι →
ι →
ι → ο
.
(
∀ x2 x3 .
(
∀ x4 .
wb
(
wcel
(
cv
x4
)
(
cv
x2
)
)
(
wcel
(
cv
x4
)
(
cv
x3
)
)
)
⟶
wceq
(
cv
x2
)
(
cv
x3
)
)
⟶
∀ x2 x3 .
wb
(
wceq
(
x0
x2
x3
)
(
x1
x2
x3
)
)
(
∀ x4 .
wb
(
wcel
(
cv
x4
)
(
x0
x2
x3
)
)
(
wcel
(
cv
x4
)
(
x1
x2
x3
)
)
)
(proof)
Theorem
df_clel
:
∀ x0 x1 :
ι → ο
.
wb
(
wcel
x0
x1
)
(
wex
(
λ x2 .
wa
(
wceq
(
cv
x2
)
x0
)
(
wcel
(
cv
x2
)
x1
)
)
)
(proof)
Theorem
df_nfc
:
∀ x0 :
ι →
ι → ο
.
wb
(
wnfc
x0
)
(
∀ x1 .
wnf
(
λ x2 .
wcel
(
cv
x1
)
(
x0
x2
)
)
)
(proof)
Theorem
df_ne
:
∀ x0 x1 :
ι → ο
.
wb
(
wne
x0
x1
)
(
wn
(
wceq
x0
x1
)
)
(proof)
Theorem
df_nel
:
∀ x0 x1 :
ι → ο
.
wb
(
wnel
x0
x1
)
(
wn
(
wcel
x0
x1
)
)
(proof)
Theorem
df_ral
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wb
(
wral
x0
x1
)
(
∀ x2 .
wcel
(
cv
x2
)
(
x1
x2
)
⟶
x0
x2
)
(proof)
Theorem
df_rex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wb
(
wrex
x0
x1
)
(
wex
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
x1
x2
)
)
(
x0
x2
)
)
)
(proof)
Theorem
df_reu
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wb
(
wreu
x0
x1
)
(
weu
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
x1
x2
)
)
(
x0
x2
)
)
)
(proof)