Search for blocks/addresses/...
Proofgold Asset
asset id
059892934b05961090ea51a2f7829d02b9a9d7b664881d0ee6d791c786e6095d
asset hash
527a82ab1d1a7b523c31c4e59b9a10b4b9f0f28bc84be16767c20cd181fa748a
bday / block
30188
tx
e15fa..
preasset
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Param
u3
:
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
nat_p
nat_p
:
ι
→
ο
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
Sing
Sing
:
ι
→
ι
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
equip
equip
:
ι
→
ι
→
ο
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
surj_rinv
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
binintersect_com
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
aa241..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ο
.
x3
x0
⟶
x3
x1
⟶
x3
x2
⟶
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
x3
x4
Known
5d098..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
atleastp
u3
x0
Known
6be8c..
:
∀ x0 x1 x2 .
x0
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
535ce..
:
∀ x0 x1 x2 .
x1
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
f4e2f..
:
∀ x0 x1 x2 .
x2
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
0bee3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 x3 x4 .
nat_p
x4
⟶
∀ x5 x6 x7 .
x5
⊆
x0
⟶
x6
⊆
x0
⟶
x7
⊆
x0
⟶
x5
=
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x5
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x7
)
⟶
(
∀ x8 .
x8
∈
x5
⟶
nIn
x8
x7
)
⟶
(
∀ x8 .
x8
∈
x7
⟶
x8
∈
{x9 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x4
}
)
⟶
∀ x8 x9 .
x8
∈
x6
⟶
x9
∈
x7
⟶
x9
∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
⟶
x1
x8
x9
⟶
∀ x10 :
ι → ι
.
(
∀ x11 .
x11
∈
x6
⟶
x10
x11
∈
x5
)
⟶
(
∀ x11 .
x11
∈
x6
⟶
x1
x11
(
x10
x11
)
)
⟶
(
∀ x11 .
x11
∈
x5
⟶
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x6
)
(
x10
x13
=
x11
)
⟶
x12
)
⟶
x12
)
⟶
atleastp
x4
{x11 ∈
setminus
x6
(
Sing
x8
)
|
x1
(
x10
x11
)
x9
}
(proof)
Param
u6
:
ι
Theorem
867ba..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 x3 x4 .
nat_p
x4
⟶
∀ x5 x6 x7 .
x5
⊆
x0
⟶
x6
⊆
x0
⟶
x7
⊆
x0
⟶
x5
=
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x5
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x7
)
⟶
(
∀ x8 .
x8
∈
x5
⟶
nIn
x8
x7
)
⟶
(
∀ x8 .
x8
∈
x7
⟶
x8
∈
{x9 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x4
}
)
⟶
∀ x8 x9 .
x8
∈
x6
⟶
x9
∈
x7
⟶
x9
∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
⟶
x1
x8
x9
⟶
∀ x10 :
ι → ι
.
(
∀ x11 .
x11
∈
x6
⟶
x10
x11
∈
x5
)
⟶
(
∀ x11 .
x11
∈
x6
⟶
x1
x11
(
x10
x11
)
)
⟶
(
∀ x11 .
x11
∈
x5
⟶
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x6
)
(
x10
x13
=
x11
)
⟶
x12
)
⟶
x12
)
⟶
atleastp
x4
{x11 ∈
setminus
x6
(
Sing
x8
)
|
x1
(
x10
x11
)
x9
}
(proof)