Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../fa553..
PUebF../4c198..
vout
PrCit../4cb66.. 3.93 bars
TMcGs../bfda4.. ownership of 867ba.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHiH../345f2.. ownership of a7807.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKkH../36cb6.. ownership of 0bee3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXw7../ecc75.. ownership of f0d92.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUNHu../05989.. doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Param u3 : ι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param nat_pnat_p : ιο
Param setminussetminus : ιιι
Param SepSep : ι(ιο) → ι
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param SingSing : ιι
Definition nInnIn := λ x0 x1 . not (x0x1)
Param binunionbinunion : ιιι
Param equipequip : ιιο
Param binintersectbinintersect : ιιι
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Param invinv : ι(ιι) → ιι
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known surj_rinvsurj_rinv : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)∀ x3 . x3x1and (inv x0 x2 x3x0) (x2 (inv x0 x2 x3) = x3)
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known cfabd.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2x2DirGraphOutNeighbors x0 x1 x3
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known binintersect_combinintersect_com : ∀ x0 x1 . binintersect x0 x1 = binintersect x1 x0
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Known aa241.. : ∀ x0 x1 x2 . ∀ x3 : ι → ο . x3 x0x3 x1x3 x2∀ x4 . x4SetAdjoin (UPair x0 x1) x2x3 x4
Known 5d098.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)atleastp u3 x0
Known 6be8c.. : ∀ x0 x1 x2 . x0SetAdjoin (UPair x0 x1) x2
Known 535ce.. : ∀ x0 x1 x2 . x1SetAdjoin (UPair x0 x1) x2
Known f4e2f.. : ∀ x0 x1 x2 . x2SetAdjoin (UPair x0 x1) x2
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 0bee3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 x3 x4 . nat_p x4∀ x5 x6 x7 . x5x0x6x0x7x0x5 = setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2)(∀ x8 . x8x6nIn x8 x5)(∀ x8 . x8x6nIn x8 x7)(∀ x8 . x8x5nIn x8 x7)(∀ x8 . x8x7x8{x9 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x3)) x4})∀ x8 x9 . x8x6x9x7x9setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2))x1 x8 x9∀ x10 : ι → ι . (∀ x11 . x11x6x10 x11x5)(∀ x11 . x11x6x1 x11 (x10 x11))(∀ x11 . x11x5∀ x12 : ο . (∀ x13 . and (x13x6) (x10 x13 = x11)x12)x12)atleastp x4 {x11 ∈ setminus x6 (Sing x8)|x1 (x10 x11) x9} (proof)
Param u6 : ι
Theorem 867ba.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))(∀ x2 . x2x0atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 x3 x4 . nat_p x4∀ x5 x6 x7 . x5x0x6x0x7x0x5 = setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2)(∀ x8 . x8x6nIn x8 x5)(∀ x8 . x8x6nIn x8 x7)(∀ x8 . x8x5nIn x8 x7)(∀ x8 . x8x7x8{x9 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x3)) x4})∀ x8 x9 . x8x6x9x7x9setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2))x1 x8 x9∀ x10 : ι → ι . (∀ x11 . x11x6x10 x11x5)(∀ x11 . x11x6x1 x11 (x10 x11))(∀ x11 . x11x5∀ x12 : ο . (∀ x13 . and (x13x6) (x10 x13 = x11)x12)x12)atleastp x4 {x11 ∈ setminus x6 (Sing x8)|x1 (x10 x11) x9} (proof)