Search for blocks/addresses/...

Proofgold Asset

asset id
8ae21e21b14c807d6c3732c08fc0e64716e74e92f9fbdd1b61d3491aeaaa5c39
asset hash
0ab2587e210c2a5d284ff5e4f8d5c172c1bb8b4d8fdce7cb03d79a9f020b268f
bday / block
19311
tx
ab9c8..
preasset
doc published by Pr4zB..
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Param Church17_to_u17 : CT17 ι
Definition Church17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 x4 x1 x3 x6 x8 x5 x7 x11 x9 x12 x10 x14 x15 x16 x13
Param u17_to_Church17 : ιιιιιιιιιιιιιιιιιιι
Definition u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 := λ x0 . Church17_to_u17 (Church17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 (u17_to_Church17 x0))
Known 866c8.. : ∀ x0 . x0u12∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 x0
Known 428fd.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 0 = u1
Known 2b77d.. : 112
Known 6eb3e.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u1 = u3
Known 2f583.. : 312
Known 00076.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u2 = 0
Known 46814.. : 012
Known 737c8.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u3 = u2
Known 7c2ac.. : 212
Known b5b60.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u4 = u5
Known 04716.. : 512
Known d3a23.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u5 = u7
Known 35d73.. : 712
Known 9e037.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u6 = u4
Known e4fc0.. : 412
Known af667.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u7 = u6
Known fbe39.. : 612
Known 86df1.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u8 = u10
Known 42552.. : 1012
Known 1f384.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u9 = u8
Known 5196c.. : 812
Known f964e.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u10 = u11
Known fee2e.. : 1112
Known 1f07b.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u11 = u9
Known 4fa36.. : 912
Theorem bb2bc.. : ∀ x0 . x0u12u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0u12 (proof)
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Known f2c34.. : ∀ x0 . x0u16∀ x1 . x1u16u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0 = u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1x0 = x1
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem 90895.. : ∀ x0 . x0u12∀ x1 . x1u12u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0 = u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1x0 = x1 (proof)
Definition u17 := ordsucc u16
Definition TwoRamseyGraph_3_6_Church17 := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2)
Definition TwoRamseyGraph_3_6_17 := λ x0 x1 . x0u17x1u17TwoRamseyGraph_3_6_Church17 (u17_to_Church17 x0) (u17_to_Church17 x1) = λ x3 x4 . x3
Known 36aae.. : ∀ x0 . x0u16∀ x1 . x1u16TwoRamseyGraph_3_6_17 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0) (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1)TwoRamseyGraph_3_6_17 x0 x1
Theorem 619e7.. : ∀ x0 . x0u12∀ x1 . x1u12TwoRamseyGraph_3_6_17 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0) (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1)TwoRamseyGraph_3_6_17 x0 x1 (proof)
Known cases_8cases_8 : ∀ x0 . x08∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 7x1 x0
Known In_1_8In_1_8 : 18
Known In_3_8In_3_8 : 38
Known In_0_8In_0_8 : 08
Known In_2_8In_2_8 : 28
Known In_5_8In_5_8 : 58
Known In_7_8In_7_8 : 78
Known In_4_8In_4_8 : 48
Known In_6_8In_6_8 : 68
Theorem fe49a.. : ∀ x0 . x0u8u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0u8 (proof)
Theorem 902b5.. : ∀ x0 . x0u8∀ x1 . x1u8u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0 = u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1x0 = x1 (proof)
Theorem 6ac2d.. : ∀ x0 . x0u8∀ x1 . x1u8TwoRamseyGraph_3_6_17 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0) (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1)TwoRamseyGraph_3_6_17 x0 x1 (proof)
Definition Church17_p := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x4)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x5)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x6)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x7)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x8)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x9)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x10)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x11)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x12)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x13)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x14)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x18)x1 x0
Known 1b7f9.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x1)
Known 9e7eb.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x3)
Known e70c8.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0)
Known 25b64.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x2)
Known e224e.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x5)
Known 3b0d1.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x7)
Known 51a81.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4)
Known 5d397.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6)
Known 4f699.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x10)
Known e7def.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x8)
Known 712d3.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x11)
Known a8b9a.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x9)
Known 51598.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x13)
Known 15dad.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x14)
Known 7e8b2.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15)
Known d5e0f.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x12)
Known 02267.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x16)
Theorem 0504f.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_p x0Church17_p (Church17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0) (proof)
Known d0cff.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_p x0u17_to_Church17 (Church17_to_u17 x0) = x0
Known 495f5.. : ∀ x0 . x0u17Church17_to_u17 (u17_to_Church17 x0) = x0
Known db165.. : ∀ x0 . x0u17Church17_p (u17_to_Church17 x0)
Theorem 01145.. : ∀ x0 . x0u16u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0))) = x0 (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param setminussetminus : ιιι
Known 7c829.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι . (∀ x2 . x2u12x1 x2u12)(∀ x2 . x2u12∀ x3 . x3u12x1 x2 = x1 x3x2 = x3)(∀ x2 . x2u12∀ x3 . x3u12x0 (x1 x2) (x1 x3)x0 x2 x3)x1 u9 = u8x1 u10 = u11x1 u11 = u9x0 u8 u11∀ x2 . x2u12atleastp u5 x2(∀ x3 . x3x2∀ x4 . x4x2not (x0 x3 x4))atleastp u2 (setminus x2 u8)∀ x3 : ο . (∀ x4 . x4u12atleastp u5 x4(∀ x5 . x5x4∀ x6 . x6x4not (x0 x5 x6))u8x4u9x4x3)(∀ x4 . x4u12atleastp u5 x4(∀ x5 . x5x4∀ x6 . x6x4not (x0 x5 x6))u8x4u10x4x3)(∀ x4 . x4u12atleastp u5 x4(∀ x5 . x5x4∀ x6 . x6x4not (x0 x5 x6))u9x4u10x4x3)x3
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known FalseEFalseE : False∀ x0 : ο . x0
Known d7087.. : u17_to_Church17 u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x11
Known a3fb1.. : u17_to_Church17 u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x10
Known 4fc31.. : u10 = u9∀ x0 : ο . x0
Known b3a20.. : u11 = u8∀ x0 : ο . x0
Known 48ba7.. : u17_to_Church17 u8 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x9
Known a87a3.. : u17_to_Church17 u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x12
Theorem d2e57.. : ∀ x0 . x0u12atleastp u5 x0(∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))atleastp u2 (setminus x0 u8)∀ x1 : ο . (∀ x2 . x2u12atleastp u5 x2(∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (TwoRamseyGraph_3_6_17 x3 x4))u8x2u9x2x1)(∀ x2 . x2u12atleastp u5 x2(∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (TwoRamseyGraph_3_6_17 x3 x4))u8x2u10x2x1)x1 (proof)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem 02751.. : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)prim5 x0 x2x1 (proof)
Param binintersectbinintersect : ιιι
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem a08e7.. : ∀ x0 x1 . ∀ x2 : ι → ι . inj x0 x0 x2atleastp (binintersect x1 x0) (binintersect (prim5 x1 x2) x0) (proof)
Param nat_pnat_p : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known 48e0f.. : ∀ x0 . nat_p x0∀ x1 . or (atleastp x1 x0) (atleastp (ordsucc x0) x1)
Known nat_1nat_1 : nat_p 1
Known d03c6.. : ∀ x0 . atleastp u4 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0(x2 = x3∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x1)x1
Param Church17_lt8 : (ιιιιιιιιιιιιιιιιιι) → ο
Known b4903.. : ∀ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_lt8 x0Church17_lt8 x1Church17_lt8 x2Church17_lt8 x3(TwoRamseyGraph_3_6_Church17 x0 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x13) = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x1 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x13) = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x2 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x13) = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x3 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x13) = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x0 x1 = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x0 x2 = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x0 x3 = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x1 x2 = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x1 x3 = λ x5 x6 . x6)(TwoRamseyGraph_3_6_Church17 x2 x3 = λ x5 x6 . x6)False
Known 67bc1.. : ∀ x0 . x0u8Church17_lt8 (u17_to_Church17 x0)
Known d8d63.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_p x0Church17_p x1or (TwoRamseyGraph_3_6_Church17 x0 x1 = λ x3 x4 . x3) (TwoRamseyGraph_3_6_Church17 x0 x1 = λ x3 x4 . x4)
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_4nat_4 : nat_p 4
Param setsumsetsum : ιιι
Param binunionbinunion : ιιι
Known a8a92.. : ∀ x0 x1 . x0 = binunion (setminus x0 x1) (binintersect x0 x1)
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Known 4c104.. : ∀ x0 x1 x2 . (∀ x3 . x3x0or (x3 = x1) (x3 = x2))atleastp x0 u2
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known neq_5_4neq_5_4 : u5 = u4∀ x0 : ο . x0
Known 22977.. : u17_to_Church17 u5 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x6
Known 05513.. : u17_to_Church17 u4 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5
Known neq_6_4neq_6_4 : u6 = u4∀ x0 : ο . x0
Known 0e32a.. : u17_to_Church17 u6 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x7
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known neq_7_5neq_7_5 : u7 = u5∀ x0 : ο . x0
Known b0f83.. : u17_to_Church17 u7 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x8
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known neq_1_0neq_1_0 : u1 = 0∀ x0 : ο . x0
Known b0ce1.. : u17_to_Church17 u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x2
Known c5926.. : u17_to_Church17 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x1
Known neq_2_0neq_2_0 : u2 = 0∀ x0 : ο . x0
Known e8ec5.. : u17_to_Church17 u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x3
Known neq_3_1neq_3_1 : u3 = u1∀ x0 : ο . x0
Known 1ef08.. : u17_to_Church17 u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x4
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known binintersectE2binintersectE2 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x1
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known 5b991.. : equip 4 (setsum 2 2)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known In_0_4In_0_4 : 04
Known In_1_4In_1_4 : 14
Known In_2_4In_2_4 : 24
Known In_3_4In_3_4 : 34
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known nat_3nat_3 : nat_p 3
Param If_iIf_i : οιιι
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Known cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known 10417.. : ∀ x0 . x0u12atleastp u5 x0u8x0u9x0(∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))False
Known 32ea8.. : ∀ x0 . x0u12atleastp u5 x0u8x0u10x0(∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))False
Param add_natadd_nat : ιιι
Known 1521b.. : add_nat 8 8 = 16
Known 4d87b.. : ∀ x0 x1 . nat_p x1x0add_nat x0 x1
Known nat_8nat_8 : nat_p 8
Theorem 9cadc.. : ∀ x0 . x0u12atleastp u5 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2)) (proof)
Theorem 40b07.. : ∀ x0 . x0u12atleastp u5 x0not (∀ x1 . x1x0∀ x2 . x2x0not (and (TwoRamseyGraph_3_6_17 x1 x2) (x1 = x2∀ x3 : ο . x3))) (proof)
Known ea47f.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι . (∀ x2 . x2u16x1 x2u16)(∀ x2 . x2u16∀ x3 . x3u16x1 x2 = x1 x3x2 = x3)(∀ x2 . x2u16∀ x3 . x3u16x0 (x1 x2) (x1 x3)x0 x2 x3)(∀ x2 . x2u16x1 (x1 (x1 (x1 x2))) = x2)x1 u12 = u13x1 u13 = u14x1 u14 = u15x1 u15 = u12∀ x2 . x2u16atleastp u6 x2(∀ x3 . x3x2∀ x4 . x4x2not (x0 x3 x4))atleastp u2 (setminus x2 u12)∀ x3 : ο . (∀ x4 . x4u16atleastp u6 x4(∀ x5 . x5x4∀ x6 . x6x4not (x0 x5 x6))u12x4u13x4x3)(∀ x4 . x4u16atleastp u6 x4(∀ x5 . x5x4∀ x6 . x6x4not (x0 x5 x6))u12x4u14x4x3)x3
Known f9dcb.. : ∀ x0 . x0u16u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0u16
Known be3a6.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u12 = u13
Known 0e84a.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u13 = u14
Known 4b6e2.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u14 = u15
Known 5681c.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u15 = u12
Known 27d0c.. : ∀ x0 : ι → ι → ο . x0 0 u2x0 u4 u6x0 u1 u12x0 u5 u12x0 u8 u12x0 u9 u12x0 u3 u13x0 u7 u13x0 u10 u13x0 u2 u14x0 u6 u14x0 u11 u14x0 0 u15x0 u4 u15x0 0 u2x0 u4 u6x0 u11 u15∀ x1 . x1u16atleastp u6 x1u12x1u13x1(∀ x2 . x2x1∀ x3 . x3x1not (x0 x2 x3))False
Known 6b8c1.. : ∀ x0 : ι → ι → ο . x0 0 u2x0 u4 u6x0 u1 u12x0 u5 u12x0 u8 u12x0 u9 u12x0 u3 u13x0 u7 u13x0 u10 u13x0 u2 u14x0 u6 u14x0 u11 u14x0 0 u15x0 u4 u15x0 u3 u4x0 0 u7x0 u10 u14∀ x1 . x1u16atleastp u6 x1u12x1u14x1(∀ x2 . x2x1∀ x3 . x3x1not (x0 x2 x3))False
Known cf897.. : u17_to_Church17 u14 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x15
Known f5ab5.. : u14 = u10∀ x0 : ο . x0
Known neq_7_0neq_7_0 : u7 = 0∀ x0 : ο . x0
Known neq_4_3neq_4_3 : u4 = u3∀ x0 : ο . x0
Known c424d.. : u17_to_Church17 u15 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x16
Known 9c5db.. : u15 = u11∀ x0 : ο . x0
Known 4b742.. : u15 = u4∀ x0 : ο . x0
Known 160ad.. : u15 = 0∀ x0 : ο . x0
Known 4e1aa.. : u14 = u11∀ x0 : ο . x0
Known 62d80.. : u14 = u6∀ x0 : ο . x0
Known 0bb18.. : u14 = u2∀ x0 : ο . x0
Known 0975c.. : u17_to_Church17 u13 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x14
Known 78358.. : u13 = u10∀ x0 : ο . x0
Known d9b35.. : u13 = u7∀ x0 : ο . x0
Known 19222.. : u13 = u3∀ x0 : ο . x0
Known a52d8.. : u17_to_Church17 u12 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x13
Known 22885.. : u12 = u9∀ x0 : ο . x0
Known a6a6c.. : u12 = u8∀ x0 : ο . x0
Known 07eba.. : u12 = u5∀ x0 : ο . x0
Known ce0cd.. : u12 = u1∀ x0 : ο . x0
Known a62ab.. : ∀ x0 : ι → ι → ο . (∀ x1 . x1u12atleastp u5 x1not (∀ x2 . x2x1∀ x3 . x3x1not (x0 x2 x3)))∀ x1 . x1u16atleastp u6 x1(∀ x2 . x2x1∀ x3 . x3x1not (x0 x2 x3))atleastp u2 (setminus x1 u12)
Theorem 30d6b.. : ∀ x0 . x0u16atleastp u6 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2)) (proof)
Known 32519.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (x0 u12 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x14)(x0 u13 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15)(x0 u14 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16)(x0 u15 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17)(x0 u16 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x18)∀ x1 : ι → ι → ο . (∀ x2 . x2u17∀ x3 . x3u17(x2 = x3∀ x4 : ο . x4)(TwoRamseyGraph_3_6_Church17 (x0 x2) (x0 x3) = λ x5 x6 . x5)x1 x2 x3)(∀ x2 . x2u12atleastp u5 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))(∀ x2 . x2u16atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 . x2u17atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4))
Known 480e6.. : u17_to_Church17 u16 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x17
Theorem 5922f.. : ∀ x0 . x0u17atleastp u6 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2)) (proof)
Param TwoRamseyProp_atleastp : ιιιο
Known 68ea7.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u17atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u17atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))not (TwoRamseyProp_atleastp 3 6 17)
Known 72dc0.. : ∀ x0 x1 . TwoRamseyGraph_3_6_17 x0 x1TwoRamseyGraph_3_6_17 x1 x0
Known d6d79.. : ∀ x0 . x0u17atleastp u3 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)TwoRamseyGraph_3_6_17 x1 x2)
Theorem not_TwoRamseyProp_atleast_3_6_17 : not (TwoRamseyProp_atleastp 3 6 17) (proof)
Param TwoRamseyPropTwoRamseyProp : ιιιο
Known 9e653.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u17atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u17atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))not (TwoRamseyProp 3 6 17)
Theorem not_TwoRamseyProp_3_6_17not_TwoRamseyProp_3_6_17 : not (TwoRamseyProp 3 6 17) (proof)