Search for blocks/addresses/...
Proofgold Asset
asset id
85a3cfa41c337431df70a8edde00d5b2d74c70034131abec66dcf386c76d4d1c
asset hash
1aa2e1d0791f3a333b7f328caad6c9d006ad2ddd26964bfa4fffc8af8a7f9dfa
bday / block
4890
tx
3e9ac..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
If_Vo3
If_Vo3
:=
λ x0 : ο .
λ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x3 :
(
ι → ο
)
→ ο
.
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
andEL
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
If_Vo3_1
If_Vo3_1
:
∀ x0 : ο .
∀ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
⟶
If_Vo3
x0
x1
x2
=
x1
(proof)
Known
andER
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
If_Vo3_0
If_Vo3_0
:
∀ x0 : ο .
∀ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
not
x0
⟶
If_Vo3
x0
x1
x2
=
x2
(proof)
Definition
Descr_Vo3
Descr_Vo3
:=
λ x0 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
λ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo3_prop
Descr_Vo3_prop
:
∀ x0 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo3
x0
)
(proof)
Definition
b9fc2..
:=
λ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x1 .
λ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x3 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x6 .
x6
∈
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_Vo3
In_rec_Vo3
:=
λ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x1 .
Descr_Vo3
(
b9fc2..
x0
x1
)
Theorem
f621a..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x3 .
x3
∈
x1
⟶
b9fc2..
x0
x3
(
x2
x3
)
)
⟶
b9fc2..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
0f3d9..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
b9fc2..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
and
(
∀ x5 .
x5
∈
x1
⟶
b9fc2..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Known
In_ind
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Theorem
387ad..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
(
(
ι → ο
)
→ ο
)
→ ο
.
b9fc2..
x0
x1
x2
⟶
b9fc2..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
e24c6..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
b9fc2..
x0
x1
(
In_rec_Vo3
x0
x1
)
(proof)
Theorem
495f3..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
b9fc2..
x0
x1
(
x0
x1
(
In_rec_Vo3
x0
)
)
(proof)
Theorem
In_rec_Vo3_eq
In_rec_Vo3_eq
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_Vo3
x0
x1
=
x0
x1
(
In_rec_Vo3
x0
)
(proof)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
inv
inv
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 .
prim0
(
λ x3 .
and
(
x3
∈
x0
)
(
x1
x3
=
x2
)
)
Known
Eps_i_ax
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Known
surj_rinv
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Known
inj_linv_coddep
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
∀ x3 .
x3
∈
x0
⟶
inv
x0
x2
(
x2
x3
)
=
x3
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
bij_inv
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
inv
x0
x2
)
Known
bij_comp
bij_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
bij
x0
x1
x3
⟶
bij
x1
x2
x4
⟶
bij
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
Known
bij_id
bij_id
:
∀ x0 .
bij
x0
x0
(
λ x1 .
x1
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
exactly1of2
exactly1of2
:=
λ x0 x1 : ο .
or
(
and
x0
(
not
x1
)
)
(
and
(
not
x0
)
x1
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
exactly1of2_I1
exactly1of2_I1
:
∀ x0 x1 : ο .
x0
⟶
not
x1
⟶
exactly1of2
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
exactly1of2_I2
exactly1of2_I2
:
∀ x0 x1 : ο .
not
x0
⟶
x1
⟶
exactly1of2
x0
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
exactly1of2_impI1
exactly1of2_impI1
:
∀ x0 x1 : ο .
(
x0
⟶
not
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
exactly1of2
x0
x1
Known
exactly1of2_impI2
exactly1of2_impI2
:
∀ x0 x1 : ο .
(
x1
⟶
not
x0
)
⟶
(
not
x1
⟶
x0
)
⟶
exactly1of2
x0
x1
Known
exactly1of2_E
exactly1of2_E
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
not
x1
⟶
x2
)
⟶
(
not
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
exactly1of2_or
exactly1of2_or
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
or
x0
x1
Known
exactly1of2_impn12
exactly1of2_impn12
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
x0
⟶
not
x1
Known
exactly1of2_impn21
exactly1of2_impn21
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
x1
⟶
not
x0
Known
exactly1of2_nimp12
exactly1of2_nimp12
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
not
x0
⟶
x1
Known
exactly1of2_nimp21
exactly1of2_nimp21
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
not
x1
⟶
x0
Definition
exactly1of3
exactly1of3
:=
λ x0 x1 x2 : ο .
or
(
and
(
exactly1of2
x0
x1
)
(
not
x2
)
)
(
and
(
and
(
not
x0
)
(
not
x1
)
)
x2
)
Known
exactly1of3_I1
exactly1of3_I1
:
∀ x0 x1 x2 : ο .
x0
⟶
not
x1
⟶
not
x2
⟶
exactly1of3
x0
x1
x2
Known
exactly1of3_I2
exactly1of3_I2
:
∀ x0 x1 x2 : ο .
not
x0
⟶
x1
⟶
not
x2
⟶
exactly1of3
x0
x1
x2
Known
exactly1of3_I3
exactly1of3_I3
:
∀ x0 x1 x2 : ο .
not
x0
⟶
not
x1
⟶
x2
⟶
exactly1of3
x0
x1
x2
Known
exactly1of3_impI1
exactly1of3_impI1
:
∀ x0 x1 x2 : ο .
(
x0
⟶
not
x1
)
⟶
(
x0
⟶
not
x2
)
⟶
(
x1
⟶
not
x2
)
⟶
(
not
x0
⟶
or
x1
x2
)
⟶
exactly1of3
x0
x1
x2
Known
exactly1of3_impI2
exactly1of3_impI2
:
∀ x0 x1 x2 : ο .
(
x1
⟶
not
x0
)
⟶
(
x1
⟶
not
x2
)
⟶
(
x0
⟶
not
x2
)
⟶
(
not
x1
⟶
or
x0
x2
)
⟶
exactly1of3
x0
x1
x2
Known
exactly1of3_impI3
exactly1of3_impI3
:
∀ x0 x1 x2 : ο .
(
x2
⟶
not
x0
)
⟶
(
x2
⟶
not
x1
)
⟶
(
x0
⟶
not
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
exactly1of3
x0
x1
x2
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Known
exactly1of3_E
exactly1of3_E
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
∀ x3 : ο .
(
x0
⟶
not
x1
⟶
not
x2
⟶
x3
)
⟶
(
not
x0
⟶
x1
⟶
not
x2
⟶
x3
)
⟶
(
not
x0
⟶
not
x1
⟶
x2
⟶
x3
)
⟶
x3
Known
or3I1
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Known
or3I2
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Known
or3I3
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Known
exactly1of3_or
exactly1of3_or
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
or
(
or
x0
x1
)
x2
Known
exactly1of3_impn12
exactly1of3_impn12
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x0
⟶
not
x1
Known
exactly1of3_impn13
exactly1of3_impn13
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x0
⟶
not
x2
Known
exactly1of3_impn21
exactly1of3_impn21
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x1
⟶
not
x0
Known
exactly1of3_impn23
exactly1of3_impn23
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x1
⟶
not
x2
Known
exactly1of3_impn31
exactly1of3_impn31
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x2
⟶
not
x0
Known
exactly1of3_impn32
exactly1of3_impn32
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x2
⟶
not
x1
Known
exactly1of3_nimp1
exactly1of3_nimp1
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
not
x0
⟶
or
x1
x2
Known
exactly1of3_nimp2
exactly1of3_nimp2
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
not
x1
⟶
or
x0
x2
Known
exactly1of3_nimp3
exactly1of3_nimp3
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
not
x2
⟶
or
x0
x1
Definition
Descr_Vo1
Descr_Vo1
:=
λ x0 :
(
ι → ο
)
→ ο
.
λ x1 .
∀ x2 :
ι → ο
.
x0
x2
⟶
x2
x1
Definition
reflexive
reflexive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 .
x0
x1
x1
Definition
irreflexive
irreflexive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 .
not
(
x0
x1
x1
)
Definition
symmetric
symmetric
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
Definition
antisymmetric
antisymmetric
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
⟶
x1
=
x2
Definition
transitive
transitive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x2
x3
⟶
x0
x1
x3
Definition
eqreln
eqreln
:=
λ x0 :
ι →
ι → ο
.
and
(
and
(
reflexive
x0
)
(
symmetric
x0
)
)
(
transitive
x0
)
Definition
per
per
:=
λ x0 :
ι →
ι → ο
.
and
(
symmetric
x0
)
(
transitive
x0
)
Definition
linear
linear
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 .
or
(
x0
x1
x2
)
(
x0
x2
x1
)
Definition
trichotomous_or
trichotomous_or
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 .
or
(
or
(
x0
x1
x2
)
(
x1
=
x2
)
)
(
x0
x2
x1
)
Definition
partialorder
partialorder
:=
λ x0 :
ι →
ι → ο
.
and
(
and
(
reflexive
x0
)
(
antisymmetric
x0
)
)
(
transitive
x0
)
Definition
totalorder
totalorder
:=
λ x0 :
ι →
ι → ο
.
and
(
partialorder
x0
)
(
linear
x0
)
Definition
strictpartialorder
strictpartialorder
:=
λ x0 :
ι →
ι → ο
.
and
(
irreflexive
x0
)
(
transitive
x0
)
Definition
stricttotalorder
stricttotalorder
:=
λ x0 :
ι →
ι → ο
.
and
(
strictpartialorder
x0
)
(
trichotomous_or
x0
)
Theorem
per_sym
per_sym
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
symmetric
x0
(proof)
Theorem
per_tra
per_tra
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
transitive
x0
(proof)
Theorem
per_stra1
per_stra1
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 x3 .
x0
x2
x1
⟶
x0
x2
x3
⟶
x0
x1
x3
(proof)
Theorem
per_stra2
per_stra2
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x3
x2
⟶
x0
x1
x3
(proof)
Theorem
per_stra3
per_stra3
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 x3 .
x0
x2
x1
⟶
x0
x3
x2
⟶
x0
x1
x3
(proof)
Theorem
per_ref1
per_ref1
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
x0
x1
x1
(proof)
Theorem
per_ref2
per_ref2
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x2
(proof)
Theorem
partialorder_strictpartialorder
partialorder_strictpartialorder
:
∀ x0 :
ι →
ι → ο
.
partialorder
x0
⟶
strictpartialorder
(
λ x1 x2 .
and
(
x0
x1
x2
)
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
)
(proof)
Definition
reflclos
reflclos
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
or
(
x0
x1
x2
)
(
x1
=
x2
)
Theorem
reflclos_refl
reflclos_refl
:
∀ x0 :
ι →
ι → ο
.
reflexive
(
reflclos
x0
)
(proof)
Theorem
reflclos_min
reflclos_min
:
∀ x0 x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
x3
)
⟶
reflexive
x1
⟶
∀ x2 x3 .
reflclos
x0
x2
x3
⟶
x1
x2
x3
(proof)
Theorem
strictpartialorder_partialorder_reflclos
strictpartialorder_partialorder_reflclos
:
∀ x0 :
ι →
ι → ο
.
strictpartialorder
x0
⟶
partialorder
(
reflclos
x0
)
(proof)
Known
or3E
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Theorem
stricttotalorder_totalorder_reflclos
stricttotalorder_totalorder_reflclos
:
∀ x0 :
ι →
ι → ο
.
stricttotalorder
x0
⟶
totalorder
(
reflclos
x0
)
(proof)
Theorem
9e56d..
:
∀ x0 :
ι → ο
.
(
∀ x1 :
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
x1
x2
⟶
x1
(
λ x3 .
and
(
x2
x3
)
(
x3
=
prim0
x2
⟶
∀ x4 : ο .
x4
)
)
)
⟶
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x1
x3
)
⟶
x1
(
Descr_Vo1
x2
)
)
⟶
x1
x0
)
⟶
∀ x1 :
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
x1
x2
⟶
x1
(
λ x3 .
and
(
x2
x3
)
(
x3
=
prim0
x2
⟶
∀ x4 : ο .
x4
)
)
)
⟶
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x1
x3
)
⟶
x1
(
Descr_Vo1
x2
)
)
⟶
x1
(
λ x2 .
and
(
x0
x2
)
(
x2
=
prim0
x0
⟶
∀ x3 : ο .
x3
)
)
(proof)
Theorem
588d8..
:
∀ x0 :
(
ι → ο
)
→ ο
.
(
∀ x1 :
ι → ο
.
x0
x1
⟶
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x2
(
λ x4 .
and
(
x3
x4
)
(
x4
=
prim0
x3
⟶
∀ x5 : ο .
x5
)
)
)
⟶
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x2
x4
)
⟶
x2
(
Descr_Vo1
x3
)
)
⟶
x2
x1
)
⟶
∀ x1 :
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
x1
x2
⟶
x1
(
λ x3 .
and
(
x2
x3
)
(
x3
=
prim0
x2
⟶
∀ x4 : ο .
x4
)
)
)
⟶
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x1
x3
)
⟶
x1
(
Descr_Vo1
x2
)
)
⟶
x1
(
Descr_Vo1
x0
)
(proof)
Theorem
ef1ce..
:
∀ x0 :
(
ι → ο
)
→ ο
.
(
∀ x1 :
ι → ο
.
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x2
(
λ x4 .
and
(
x3
x4
)
(
x4
=
prim0
x3
⟶
∀ x5 : ο .
x5
)
)
)
⟶
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x2
x4
)
⟶
x2
(
Descr_Vo1
x3
)
)
⟶
x2
x1
)
⟶
x0
x1
⟶
x0
(
λ x2 .
and
(
x1
x2
)
(
x2
=
prim0
x1
⟶
∀ x3 : ο .
x3
)
)
)
⟶
(
∀ x1 :
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
x1
x2
⟶
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x3
(
λ x5 .
and
(
x4
x5
)
(
x5
=
prim0
x4
⟶
∀ x6 : ο .
x6
)
)
)
⟶
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
x4
x5
⟶
x3
x5
)
⟶
x3
(
Descr_Vo1
x4
)
)
⟶
x3
x2
)
⟶
(
∀ x2 :
ι → ο
.
x1
x2
⟶
x0
x2
)
⟶
x0
(
Descr_Vo1
x1
)
)
⟶
∀ x1 :
ι → ο
.
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x2
(
λ x4 .
and
(
x3
x4
)
(
x4
=
prim0
x3
⟶
∀ x5 : ο .
x5
)
)
)
⟶
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x2
x4
)
⟶
x2
(
Descr_Vo1
x3
)
)
⟶
x2
x1
)
⟶
x0
x1
(proof)
Known
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Theorem
484e2..
:
∀ x0 :
ι → ο
.
(
∀ x1 :
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
x1
x2
⟶
x1
(
λ x3 .
and
(
x2
x3
)
(
x3
=
prim0
x2
⟶
∀ x4 : ο .
x4
)
)
)
⟶
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x1
x3
)
⟶
x1
(
Descr_Vo1
x2
)
)
⟶
x1
x0
)
⟶
∀ x1 :
ι → ο
.
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x2
(
λ x4 .
and
(
x3
x4
)
(
x4
=
prim0
x3
⟶
∀ x5 : ο .
x5
)
)
)
⟶
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x2
x4
)
⟶
x2
(
Descr_Vo1
x3
)
)
⟶
x2
x1
)
⟶
or
(
∀ x2 .
x1
x2
⟶
x0
x2
)
(
∀ x2 .
x0
x2
⟶
x1
x2
)
(proof)
Theorem
60d40..
:
∀ x0 :
ι → ο
.
(
∀ x1 :
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
x1
x2
⟶
x1
(
λ x3 .
and
(
x2
x3
)
(
x3
=
prim0
x2
⟶
∀ x4 : ο .
x4
)
)
)
⟶
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x1
x3
)
⟶
x1
(
Descr_Vo1
x2
)
)
⟶
x1
x0
)
⟶
∀ x1 :
ι → ο
.
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x2
(
λ x4 .
and
(
x3
x4
)
(
x4
=
prim0
x3
⟶
∀ x5 : ο .
x5
)
)
)
⟶
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x2
x4
)
⟶
x2
(
Descr_Vo1
x3
)
)
⟶
x2
x1
)
⟶
x1
(
prim0
x0
)
⟶
∀ x2 .
x0
x2
⟶
x1
x2
(proof)
Theorem
d31dd..
:
∀ x0 :
ι → ο
.
∀ x1 :
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
x1
x2
⟶
x1
(
λ x3 .
and
(
x2
x3
)
(
x3
=
prim0
x2
⟶
∀ x4 : ο .
x4
)
)
)
⟶
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x1
x3
)
⟶
x1
(
Descr_Vo1
x2
)
)
⟶
x1
(
Descr_Vo1
(
λ x2 :
ι → ο
.
and
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x3
(
λ x5 .
and
(
x4
x5
)
(
x5
=
prim0
x4
⟶
∀ x6 : ο .
x6
)
)
)
⟶
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
x4
x5
⟶
x3
x5
)
⟶
x3
(
Descr_Vo1
x4
)
)
⟶
x3
x2
)
(
∀ x3 .
x0
x3
⟶
x2
x3
)
)
)
(proof)
Theorem
d2f26..
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
Descr_Vo1
(
λ x2 :
ι → ο
.
and
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x3
(
λ x5 .
and
(
x4
x5
)
(
x5
=
prim0
x4
⟶
∀ x6 : ο .
x6
)
)
)
⟶
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
x4
x5
⟶
x3
x5
)
⟶
x3
(
Descr_Vo1
x4
)
)
⟶
x3
x2
)
(
∀ x3 .
x0
x3
⟶
x2
x3
)
)
x1
(proof)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
d5dd5..
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
(
Descr_Vo1
(
λ x1 :
ι → ο
.
and
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x2
(
λ x4 .
and
(
x3
x4
)
(
x4
=
prim0
x3
⟶
∀ x5 : ο .
x5
)
)
)
⟶
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x2
x4
)
⟶
x2
(
Descr_Vo1
x3
)
)
⟶
x2
x1
)
(
∀ x2 .
x0
x2
⟶
x1
x2
)
)
)
)
(proof)
Definition
ZermeloWO
ZermeloWO
:=
λ x0 .
Descr_Vo1
(
λ x1 :
ι → ο
.
and
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x2
(
λ x4 .
and
(
x3
x4
)
(
x4
=
prim0
x3
⟶
∀ x5 : ο .
x5
)
)
)
⟶
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
x3
x4
⟶
x2
x4
)
⟶
x2
(
Descr_Vo1
x3
)
)
⟶
x2
x1
)
(
∀ x2 .
x2
=
x0
⟶
x1
x2
)
)
Theorem
b9994..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
x1
x2
⟶
x1
(
λ x3 .
and
(
x2
x3
)
(
x3
=
prim0
x2
⟶
∀ x4 : ο .
x4
)
)
)
⟶
(
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x2
x3
⟶
x1
x3
)
⟶
x1
(
Descr_Vo1
x2
)
)
⟶
x1
(
ZermeloWO
x0
)
(proof)
Theorem
ZermeloWO_ref
ZermeloWO_ref
:
reflexive
ZermeloWO
(proof)
Theorem
ZermeloWO_Eps
ZermeloWO_Eps
:
∀ x0 .
prim0
(
ZermeloWO
x0
)
=
x0
(proof)
Theorem
ZermeloWO_lin
ZermeloWO_lin
:
linear
ZermeloWO
(proof)
Theorem
ZermeloWO_tra
ZermeloWO_tra
:
transitive
ZermeloWO
(proof)
Theorem
ZermeloWO_antisym
ZermeloWO_antisym
:
antisymmetric
ZermeloWO
(proof)
Theorem
ZermeloWO_partialorder
ZermeloWO_partialorder
:
partialorder
ZermeloWO
(proof)
Theorem
ZermeloWO_totalorder
ZermeloWO_totalorder
:
totalorder
ZermeloWO
(proof)
Theorem
ZermeloWO_wo
ZermeloWO_wo
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x0
x2
)
(
∀ x3 .
x0
x3
⟶
ZermeloWO
x2
x3
)
⟶
x1
)
⟶
x1
(proof)
Definition
ZermeloWOstrict
ZermeloWOstrict
:=
λ x0 x1 .
and
(
ZermeloWO
x0
x1
)
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
Theorem
ZermeloWOstrict_trich
ZermeloWOstrict_trich
:
trichotomous_or
ZermeloWOstrict
(proof)
Theorem
ZermeloWOstrict_stricttotalorder
ZermeloWOstrict_stricttotalorder
:
stricttotalorder
ZermeloWOstrict
(proof)
Theorem
ZermeloWOstrict_wo
ZermeloWOstrict_wo
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x0
x2
)
(
∀ x3 .
and
(
x0
x3
)
(
x3
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
ZermeloWOstrict
x2
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
Zermelo_WO
Zermelo_WO
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ο
.
and
(
totalorder
x1
)
(
∀ x2 :
ι → ο
.
(
∀ x3 : ο .
(
∀ x4 .
x2
x4
⟶
x3
)
⟶
x3
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x2
x4
)
(
∀ x5 .
x2
x5
⟶
x1
x4
x5
)
⟶
x3
)
⟶
x3
)
⟶
x0
)
⟶
x0
(proof)
Theorem
Zermelo_WO_strict
Zermelo_WO_strict
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ο
.
and
(
stricttotalorder
x1
)
(
∀ x2 :
ι → ο
.
(
∀ x3 : ο .
(
∀ x4 .
x2
x4
⟶
x3
)
⟶
x3
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x2
x4
)
(
∀ x5 .
and
(
x2
x5
)
(
x5
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
x1
x4
x5
)
⟶
x3
)
⟶
x3
)
⟶
x0
)
⟶
x0
(proof)