Search for blocks/addresses/...
Proofgold Asset
asset id
1dc3e04b74e2fa1d15f5fabec1cf75855c3c5ae8af644241221398c7db2e735d
asset hash
d04f7a1aaf6457422e607f06adcef90412142d5b252475e125d73b4c381d7603
bday / block
29305
tx
00976..
preasset
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
equip
equip
:
ι
→
ι
→
ο
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Theorem
f38da..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
nat_p
x2
⟶
∀ x3 x4 .
x3
∈
x0
⟶
x4
∈
DirGraphOutNeighbors
x0
x1
x3
⟶
(
∀ x5 .
x5
∈
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x2
}
⟶
not
(
x1
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
⟶
x5
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
⟶
∀ x6 .
x6
∈
{x7 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x2
}
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x3
)
)
(
x1
x6
x8
)
⟶
x7
)
⟶
x7
(proof)
Param
Subq
Subq
:
ι
→
ι
→
ο
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
u3
:
ι
Param
u6
:
ι
Theorem
b51da..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 .
nat_p
x2
⟶
∀ x3 x4 .
x3
∈
x0
⟶
x4
∈
DirGraphOutNeighbors
x0
x1
x3
⟶
(
∀ x5 .
x5
∈
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x2
}
⟶
not
(
x1
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
⟶
x5
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
⟶
(
∀ x6 .
x6
∈
{x7 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x2
}
⟶
∀ x7 .
x7
∈
DirGraphOutNeighbors
x0
x1
x3
⟶
x1
x7
x6
⟶
x7
=
x5
x6
)
⟶
∀ x6 .
x6
∈
{x7 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x2
}
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x3
)
)
(
x1
x6
x8
)
⟶
x7
)
⟶
x7
(proof)