Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../eb86f..
PUdaw../1fe20..
vout
PrCit../f1831.. 3.93 bars
TMSQY../37fe5.. ownership of b51da.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaav../e1a5e.. ownership of 2258e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdyU../041a1.. ownership of f38da.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMF9d../a8395.. ownership of 00264.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUV9f../1dc3e.. doc published by Pr4zB..
Param nat_pnat_p : ιο
Param SepSep : ι(ιο) → ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param setminussetminus : ιιι
Param binunionbinunion : ιιι
Param SingSing : ιι
Param equipequip : ιιο
Param binintersectbinintersect : ιιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known cfabd.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2x2DirGraphOutNeighbors x0 x1 x3
Theorem f38da.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . nat_p x2∀ x3 x4 . x3x0x4DirGraphOutNeighbors x0 x1 x3(∀ x5 . x5{x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x3)) x2}not (x1 x4 x5))∀ x5 : ι → ι . (∀ x6 . x6setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))x5 x6binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x4))∀ x6 . x6{x7 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x7) (DirGraphOutNeighbors x0 x1 x3)) x2}∀ x7 : ο . (∀ x8 . and (x8setminus (DirGraphOutNeighbors x0 x1 x4) (Sing x3)) (x1 x6 x8)x7)x7 (proof)
Param SubqSubq : ιιο
Param atleastpatleastp : ιιο
Param u3 : ι
Param u6 : ι
Theorem b51da.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))(∀ x2 . x2x0atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 . nat_p x2∀ x3 x4 . x3x0x4DirGraphOutNeighbors x0 x1 x3(∀ x5 . x5{x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x3)) x2}not (x1 x4 x5))∀ x5 : ι → ι . (∀ x6 . x6setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))x5 x6binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x4))(∀ x6 . x6{x7 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x7) (DirGraphOutNeighbors x0 x1 x3)) x2}∀ x7 . x7DirGraphOutNeighbors x0 x1 x3x1 x7 x6x7 = x5 x6)∀ x6 . x6{x7 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x7) (DirGraphOutNeighbors x0 x1 x3)) x2}∀ x7 : ο . (∀ x8 . and (x8setminus (DirGraphOutNeighbors x0 x1 x4) (Sing x3)) (x1 x6 x8)x7)x7 (proof)