Search for blocks/addresses/...
Proofgold Asset
asset id
2b7ed9bca218349ddb615ea349a0e349208e9e0110154492a90f8704957d1e2f
asset hash
28094ea0ad98cbd100638690d1e0b77b5341ca00ded384c9fe484e9d1aca0f5a
bday / block
28531
tx
acce4..
preasset
doc published by
PrQUS..
Param
HSNo
HSNo
:
ι
→
ο
Param
mul_HSNo
mul_HSNo
:
ι
→
ι
→
ι
Param
CSNo
CSNo
:
ι
→
ο
Param
HSNo_proj0
HSNo_proj0
:
ι
→
ι
Param
HSNo_proj1
HSNo_proj1
:
ι
→
ι
Param
conj_CSNo
conj_CSNo
:
ι
→
ι
Param
mul_CSNo
mul_CSNo
:
ι
→
ι
→
ι
Param
minus_CSNo
minus_CSNo
:
ι
→
ι
Param
add_CSNo
add_CSNo
:
ι
→
ι
→
ι
Known
HSNo_proj0proj1_split
HSNo_proj0proj1_split
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj0
x0
=
HSNo_proj0
x1
⟶
HSNo_proj1
x0
=
HSNo_proj1
x1
⟶
x0
=
x1
Known
mul_HSNo_proj0
mul_HSNo_proj0
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj0
(
mul_HSNo
x0
x1
)
=
add_CSNo
(
mul_CSNo
(
HSNo_proj0
x0
)
(
HSNo_proj0
x1
)
)
(
minus_CSNo
(
mul_CSNo
(
conj_CSNo
(
HSNo_proj1
x1
)
)
(
HSNo_proj1
x0
)
)
)
Known
mul_HSNo_proj1
mul_HSNo_proj1
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj1
(
mul_HSNo
x0
x1
)
=
add_CSNo
(
mul_CSNo
(
HSNo_proj1
x1
)
(
HSNo_proj0
x0
)
)
(
mul_CSNo
(
HSNo_proj1
x0
)
(
conj_CSNo
(
HSNo_proj0
x1
)
)
)
Known
add_CSNo_assoc
add_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
x0
(
add_CSNo
x1
x2
)
Known
mul_CSNo_distrL
mul_CSNo_distrL
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
Known
minus_mul_CSNo_distrR
minus_mul_CSNo_distrR
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
(
minus_CSNo
x1
)
=
minus_CSNo
(
mul_CSNo
x0
x1
)
Known
conj_add_CSNo
conj_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
conj_CSNo
(
add_CSNo
x0
x1
)
=
add_CSNo
(
conj_CSNo
x0
)
(
conj_CSNo
x1
)
Known
conj_mul_CSNo
conj_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
conj_CSNo
(
mul_CSNo
x0
x1
)
=
mul_CSNo
(
conj_CSNo
x1
)
(
conj_CSNo
x0
)
Known
conj_CSNo_invol
conj_CSNo_invol
:
∀ x0 .
CSNo
x0
⟶
conj_CSNo
(
conj_CSNo
x0
)
=
x0
Known
mul_CSNo_distrR
mul_CSNo_distrR
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
(
mul_CSNo
x0
x2
)
(
mul_CSNo
x1
x2
)
Known
mul_CSNo_assoc
mul_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
(
mul_CSNo
x0
x1
)
x2
Known
minus_add_CSNo
minus_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
minus_CSNo
(
add_CSNo
x0
x1
)
=
add_CSNo
(
minus_CSNo
x0
)
(
minus_CSNo
x1
)
Known
add_CSNo_rotate_3_1
add_CSNo_rotate_3_1
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
x2
(
add_CSNo
x0
x1
)
Known
mul_CSNo_rotate_3_1
mul_CSNo_rotate_3_1
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
x2
(
mul_CSNo
x0
x1
)
Known
minus_mul_CSNo_distrL
minus_mul_CSNo_distrL
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
(
minus_CSNo
x0
)
x1
=
minus_CSNo
(
mul_CSNo
x0
x1
)
Known
conj_minus_CSNo
conj_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
conj_CSNo
(
minus_CSNo
x0
)
=
minus_CSNo
(
conj_CSNo
x0
)
Known
mul_CSNo_com
mul_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
x1
=
mul_CSNo
x1
x0
Known
CSNo_minus_CSNo
CSNo_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
minus_CSNo
x0
)
Known
CSNo_add_CSNo
CSNo_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
add_CSNo
x0
x1
)
Known
CSNo_mul_CSNo
CSNo_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
mul_CSNo
x0
x1
)
Known
CSNo_conj_CSNo
CSNo_conj_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
conj_CSNo
x0
)
Known
HSNo_proj1R
HSNo_proj1R
:
∀ x0 .
HSNo
x0
⟶
CSNo
(
HSNo_proj1
x0
)
Known
HSNo_proj0R
HSNo_proj0R
:
∀ x0 .
HSNo
x0
⟶
CSNo
(
HSNo_proj0
x0
)
Known
HSNo_mul_HSNo
HSNo_mul_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
(
mul_HSNo
x0
x1
)
Theorem
mul_HSNo_assoc
mul_HSNo_assoc
:
∀ x0 x1 x2 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
mul_HSNo
x0
(
mul_HSNo
x1
x2
)
=
mul_HSNo
(
mul_HSNo
x0
x1
)
x2
(proof)