Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrRJn../fbda4..
PUKJM../61e4c..
vout
PrRJn../94d66.. 9.78 bars
TMGiK../d1f6d.. ownership of 980de.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMEmj../a0c61.. ownership of 75e0e.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
PUMTw../2b7ed.. doc published by PrQUS..
Param HSNoHSNo : ιο
Param mul_HSNomul_HSNo : ιιι
Param CSNoCSNo : ιο
Param HSNo_proj0HSNo_proj0 : ιι
Param HSNo_proj1HSNo_proj1 : ιι
Param conj_CSNoconj_CSNo : ιι
Param mul_CSNomul_CSNo : ιιι
Param minus_CSNominus_CSNo : ιι
Param add_CSNoadd_CSNo : ιιι
Known HSNo_proj0proj1_splitHSNo_proj0proj1_split : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj0 x0 = HSNo_proj0 x1HSNo_proj1 x0 = HSNo_proj1 x1x0 = x1
Known mul_HSNo_proj0mul_HSNo_proj0 : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj0 (mul_HSNo x0 x1) = add_CSNo (mul_CSNo (HSNo_proj0 x0) (HSNo_proj0 x1)) (minus_CSNo (mul_CSNo (conj_CSNo (HSNo_proj1 x1)) (HSNo_proj1 x0)))
Known mul_HSNo_proj1mul_HSNo_proj1 : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj1 (mul_HSNo x0 x1) = add_CSNo (mul_CSNo (HSNo_proj1 x1) (HSNo_proj0 x0)) (mul_CSNo (HSNo_proj1 x0) (conj_CSNo (HSNo_proj0 x1)))
Known add_CSNo_assocadd_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo (add_CSNo x0 x1) x2 = add_CSNo x0 (add_CSNo x1 x2)
Known mul_CSNo_distrLmul_CSNo_distrL : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (add_CSNo x1 x2) = add_CSNo (mul_CSNo x0 x1) (mul_CSNo x0 x2)
Known minus_mul_CSNo_distrRminus_mul_CSNo_distrR : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 (minus_CSNo x1) = minus_CSNo (mul_CSNo x0 x1)
Known conj_add_CSNoconj_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1conj_CSNo (add_CSNo x0 x1) = add_CSNo (conj_CSNo x0) (conj_CSNo x1)
Known conj_mul_CSNoconj_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1conj_CSNo (mul_CSNo x0 x1) = mul_CSNo (conj_CSNo x1) (conj_CSNo x0)
Known conj_CSNo_involconj_CSNo_invol : ∀ x0 . CSNo x0conj_CSNo (conj_CSNo x0) = x0
Known mul_CSNo_distrRmul_CSNo_distrR : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo (add_CSNo x0 x1) x2 = add_CSNo (mul_CSNo x0 x2) (mul_CSNo x1 x2)
Known mul_CSNo_assocmul_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo (mul_CSNo x0 x1) x2
Known minus_add_CSNominus_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1minus_CSNo (add_CSNo x0 x1) = add_CSNo (minus_CSNo x0) (minus_CSNo x1)
Known add_CSNo_rotate_3_1add_CSNo_rotate_3_1 : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo x0 (add_CSNo x1 x2) = add_CSNo x2 (add_CSNo x0 x1)
Known mul_CSNo_rotate_3_1mul_CSNo_rotate_3_1 : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo x2 (mul_CSNo x0 x1)
Known minus_mul_CSNo_distrLminus_mul_CSNo_distrL : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo (minus_CSNo x0) x1 = minus_CSNo (mul_CSNo x0 x1)
Known conj_minus_CSNoconj_minus_CSNo : ∀ x0 . CSNo x0conj_CSNo (minus_CSNo x0) = minus_CSNo (conj_CSNo x0)
Known mul_CSNo_commul_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 x1 = mul_CSNo x1 x0
Known CSNo_minus_CSNoCSNo_minus_CSNo : ∀ x0 . CSNo x0CSNo (minus_CSNo x0)
Known CSNo_add_CSNoCSNo_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (add_CSNo x0 x1)
Known CSNo_mul_CSNoCSNo_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (mul_CSNo x0 x1)
Known CSNo_conj_CSNoCSNo_conj_CSNo : ∀ x0 . CSNo x0CSNo (conj_CSNo x0)
Known HSNo_proj1RHSNo_proj1R : ∀ x0 . HSNo x0CSNo (HSNo_proj1 x0)
Known HSNo_proj0RHSNo_proj0R : ∀ x0 . HSNo x0CSNo (HSNo_proj0 x0)
Known HSNo_mul_HSNoHSNo_mul_HSNo : ∀ x0 x1 . HSNo x0HSNo x1HSNo (mul_HSNo x0 x1)
Theorem mul_HSNo_assocmul_HSNo_assoc : ∀ x0 x1 x2 . HSNo x0HSNo x1HSNo x2mul_HSNo x0 (mul_HSNo x1 x2) = mul_HSNo (mul_HSNo x0 x1) x2 (proof)