Search for blocks/addresses/...
Proofgold Asset
asset id
cdf88115221b970d4ad3c51a33b3e43e791d894b9106d961d06943006755342c
asset hash
32be2eff214e81bc4d1c15d4fdbc97dede832a5756c9bb2ba81b2a68a493cab8
bday / block
4897
tx
51ec4..
preasset
doc published by
Pr6Pc..
Definition
canonical_elt
canonical_elt
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
prim0
(
x0
x1
)
Known
Eps_i_ax
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Theorem
canonical_elt_rel
canonical_elt_rel
:
∀ x0 :
ι →
ι → ο
.
∀ x1 .
x0
x1
x1
⟶
x0
x1
(
canonical_elt
x0
x1
)
(proof)
Param
per
per
:
(
ι
→
ι
→
ο
) →
ο
Known
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Known
per_stra1
per_stra1
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 x3 .
x0
x2
x1
⟶
x0
x2
x3
⟶
x0
x1
x3
Definition
transitive
transitive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x2
x3
⟶
x0
x1
x3
Known
per_tra
per_tra
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
transitive
x0
Theorem
canonical_elt_eq
canonical_elt_eq
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
canonical_elt
x0
x1
=
canonical_elt
x0
x2
(proof)
Theorem
canonical_elt_idem
canonical_elt_idem
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 .
x0
x1
x1
⟶
canonical_elt
x0
x1
=
canonical_elt
x0
(
canonical_elt
x0
x1
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
quotient
quotient
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
and
(
x0
x1
x1
)
(
x1
=
canonical_elt
x0
x1
)
Known
andEL
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Theorem
quotient_prop1
quotient_prop1
:
∀ x0 :
ι →
ι → ο
.
∀ x1 .
quotient
x0
x1
⟶
x0
x1
x1
(proof)
Known
andER
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
quotient_prop2
quotient_prop2
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
quotient
x0
x1
⟶
quotient
x0
x2
⟶
x0
x1
x2
⟶
x1
=
x2
(proof)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
canonical_elt_def
canonical_elt_def
:=
λ x0 :
ι →
ι → ο
.
λ x1 :
ι → ι
.
λ x2 .
If_i
(
x0
x2
(
x1
x2
)
)
(
x1
x2
)
(
canonical_elt
x0
x2
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
If_i_correct
If_i_correct
:
∀ x0 : ο .
∀ x1 x2 .
or
(
and
x0
(
If_i
x0
x1
x2
=
x1
)
)
(
and
(
not
x0
)
(
If_i
x0
x1
x2
=
x2
)
)
Theorem
canonical_elt_def_rel
canonical_elt_def_rel
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
x0
x2
x2
⟶
x0
x2
(
canonical_elt_def
x0
x1
x2
)
(proof)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
canonical_elt_def_eq
canonical_elt_def_eq
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 x3 .
x0
x2
x3
⟶
canonical_elt_def
x0
x1
x2
=
canonical_elt_def
x0
x1
x3
(proof)
Theorem
canonical_elt_def_idem
canonical_elt_def_idem
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 .
x0
x2
x2
⟶
canonical_elt_def
x0
x1
x2
=
canonical_elt_def
x0
x1
(
canonical_elt_def
x0
x1
x2
)
(proof)
Definition
quotient_def
quotient_def
:=
λ x0 :
ι →
ι → ο
.
λ x1 :
ι → ι
.
λ x2 .
and
(
x0
x2
x2
)
(
x2
=
canonical_elt_def
x0
x1
x2
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
per_ref1
per_ref1
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
x0
x1
x1
Theorem
quotient_def_prop0
quotient_def_prop0
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
∀ x2 .
x0
x2
(
x1
x2
)
⟶
x2
=
x1
x2
⟶
quotient_def
x0
x1
x2
(proof)
Theorem
quotient_def_prop1
quotient_def_prop1
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
quotient_def
x0
x1
x2
⟶
x0
x2
x2
(proof)
Theorem
quotient_def_prop2
quotient_def_prop2
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 x3 .
quotient_def
x0
x1
x2
⟶
quotient_def
x0
x1
x3
⟶
x0
x2
x3
⟶
x2
=
x3
(proof)