Search for blocks/addresses/...

Proofgold Asset

asset id
33c9050b98602153477a3618e750ae2a2bd8ebf25cb632b017e2fbeb03bcadfb
asset hash
1566e7a2d5616520b0114eea60c83a11e0a14113e3e12621769b7978d4d5ddff
bday / block
36384
tx
b3a68..
preasset
doc published by PrCmT..
Known ax_c11__ax_c11_b__ax_c11n__ax_c15__ax_c9__ax_c9_b__ax_c9_b1__ax_c9_b2__ax_c9_b3__ax_c14__ax_c16__ax_riotaBAD__df_lsatoms__df_lshyp__df_lcv__df_lfl__df_lkr__df_ldual : ∀ x0 : ο . ((∀ x1 : ι → ι → ο . ∀ x2 x3 . (∀ x4 . wceq (cv x4) (cv x3))(∀ x4 . x1 x4 x3)∀ x4 . x1 x2 x4)(∀ x1 : ι → ο . (∀ x2 . wceq (cv x2) (cv x2))(∀ x2 . x1 x2)∀ x2 . x1 x2)(∀ x1 x2 . (∀ x3 . wceq (cv x3) (cv x2))∀ x3 . wceq (cv x3) (cv x1))(∀ x1 : ι → ο . ∀ x2 x3 . wn (∀ x4 . wceq (cv x4) (cv x2))wceq (cv x3) (cv x2)x1 x3∀ x4 . wceq (cv x4) (cv x2)x1 x4)(∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x1))wn (∀ x3 . wceq (cv x3) (cv x2))wceq (cv x1) (cv x2)∀ x3 . wceq (cv x1) (cv x2))(∀ x1 . wn (∀ x2 . wceq (cv x2) (cv x2))wn (∀ x2 . wceq (cv x2) (cv x2))wceq (cv x1) (cv x1)∀ x2 . wceq (cv x2) (cv x2))(∀ x1 . wn (∀ x2 . wceq (cv x2) (cv x1))wn (∀ x2 . wceq (cv x2) (cv x1))wceq (cv x1) (cv x1)∀ x2 . wceq (cv x1) (cv x1))(∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x3))wn (∀ x3 . wceq (cv x3) (cv x1))wceq (cv x2) (cv x1)∀ x3 . wceq (cv x3) (cv x1))(∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x1))wn (∀ x3 . wceq (cv x3) (cv x3))wceq (cv x1) (cv x2)∀ x3 . wceq (cv x1) (cv x3))(∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x1))wn (∀ x3 . wceq (cv x3) (cv x2))wcel (cv x1) (cv x2)∀ x3 . wcel (cv x1) (cv x2))(∀ x1 : ι → ο . ∀ x2 x3 . (∀ x4 . wceq (cv x4) (cv x2))x1 x3∀ x4 . x1 x4)(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wceq (crio x1 x2) (cif (wreu x1 x2) (cio (λ x3 . wa (wcel (cv x3) (x2 x3)) (x1 x3))) (cfv (cab (λ x3 . wcel (cv x3) (x2 x3))) cund)))wceq clsa (cmpt (λ x1 . cvv) (λ x1 . crn (cmpt (λ x2 . cdif (cfv (cv x1) cbs) (csn (cfv (cv x1) c0g))) (λ x2 . cfv (csn (cv x2)) (cfv (cv x1) clspn)))))wceq clsh (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wa (wne (cv x2) (cfv (cv x1) cbs)) (wrex (λ x3 . wceq (cfv (cun (cv x2) (csn (cv x3))) (cfv (cv x1) clspn)) (cfv (cv x1) cbs)) (λ x3 . cfv (cv x1) cbs))) (λ x2 . cfv (cv x1) clss)))wceq clcv (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wa (wcel (cv x2) (cfv (cv x1) clss)) (wcel (cv x3) (cfv (cv x1) clss))) (wa (wpss (cv x2) (cv x3)) (wn (wrex (λ x4 . wa (wpss (cv x2) (cv x4)) (wpss (cv x4) (cv x3))) (λ x4 . cfv (cv x1) clss)))))))wceq clfn (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wceq (cfv (co (co (cv x3) (cv x4) (cfv (cv x1) cvsca)) (cv x5) (cfv (cv x1) cplusg)) (cv x2)) (co (co (cv x3) (cfv (cv x4) (cv x2)) (cfv (cfv (cv x1) csca) cmulr)) (cfv (cv x5) (cv x2)) (cfv (cfv (cv x1) csca) cplusg))) (λ x5 . cfv (cv x1) cbs)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cfv (cv x1) csca) cbs)) (λ x2 . co (cfv (cfv (cv x1) csca) cbs) (cfv (cv x1) cbs) cmap)))wceq clk (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clfn) (λ x2 . cima (ccnv (cv x2)) (csn (cfv (cfv (cv x1) csca) c0g)))))wceq cld (cmpt (λ x1 . cvv) (λ x1 . cun (ctp (cop (cfv cnx cbs) (cfv (cv x1) clfn)) (cop (cfv cnx cplusg) (cres (cof (cfv (cfv (cv x1) csca) cplusg)) (cxp (cfv (cv x1) clfn) (cfv (cv x1) clfn)))) (cop (cfv cnx csca) (cfv (cfv (cv x1) csca) coppr))) (csn (cop (cfv cnx cvsca) (cmpt2 (λ x2 x3 . cfv (cfv (cv x1) csca) cbs) (λ x2 x3 . cfv (cv x1) clfn) (λ x2 x3 . co (cv x3) (cxp (cfv (cv x1) cbs) (csn (cv x2))) (cof (cfv (cfv (cv x1) csca) cmulr))))))))x0)x0
Theorem ax_c11 : ∀ x0 : ι → ι → ο . ∀ x1 x2 . (∀ x3 . wceq (cv x3) (cv x2))(∀ x3 . x0 x3 x2)∀ x3 . x0 x1 x3 (proof)
Theorem ax_c11_b : ∀ x0 : ι → ο . (∀ x1 . wceq (cv x1) (cv x1))(∀ x1 . x0 x1)∀ x1 . x0 x1 (proof)
Theorem ax_c11n : ∀ x0 x1 . (∀ x2 . wceq (cv x2) (cv x1))∀ x2 . wceq (cv x2) (cv x0) (proof)
Theorem ax_c15 : ∀ x0 : ι → ο . ∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x1))wceq (cv x2) (cv x1)x0 x2∀ x3 . wceq (cv x3) (cv x1)x0 x3 (proof)
Theorem ax_c9 : ∀ x0 x1 . wn (∀ x2 . wceq (cv x2) (cv x0))wn (∀ x2 . wceq (cv x2) (cv x1))wceq (cv x0) (cv x1)∀ x2 . wceq (cv x0) (cv x1) (proof)
Theorem ax_c9_b : ∀ x0 . wn (∀ x1 . wceq (cv x1) (cv x1))wn (∀ x1 . wceq (cv x1) (cv x1))wceq (cv x0) (cv x0)∀ x1 . wceq (cv x1) (cv x1) (proof)
Theorem ax_c9_b1 : ∀ x0 . wn (∀ x1 . wceq (cv x1) (cv x0))wn (∀ x1 . wceq (cv x1) (cv x0))wceq (cv x0) (cv x0)∀ x1 . wceq (cv x0) (cv x0) (proof)
Theorem ax_c9_b2 : ∀ x0 x1 . wn (∀ x2 . wceq (cv x2) (cv x2))wn (∀ x2 . wceq (cv x2) (cv x0))wceq (cv x1) (cv x0)∀ x2 . wceq (cv x2) (cv x0) (proof)
Theorem ax_c9_b3 : ∀ x0 x1 . wn (∀ x2 . wceq (cv x2) (cv x0))wn (∀ x2 . wceq (cv x2) (cv x2))wceq (cv x0) (cv x1)∀ x2 . wceq (cv x0) (cv x2) (proof)
Theorem ax_c14 : ∀ x0 x1 . wn (∀ x2 . wceq (cv x2) (cv x0))wn (∀ x2 . wceq (cv x2) (cv x1))wcel (cv x0) (cv x1)∀ x2 . wcel (cv x0) (cv x1) (proof)
Theorem ax_c16 : ∀ x0 : ι → ο . ∀ x1 x2 . (∀ x3 . wceq (cv x3) (cv x1))x0 x2∀ x3 . x0 x3 (proof)
Theorem ax_riotaBAD : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . wceq (crio x0 x1) (cif (wreu x0 x1) (cio (λ x2 . wa (wcel (cv x2) (x1 x2)) (x0 x2))) (cfv (cab (λ x2 . wcel (cv x2) (x1 x2))) cund)) (proof)
Theorem df_lsatoms : wceq clsa (cmpt (λ x0 . cvv) (λ x0 . crn (cmpt (λ x1 . cdif (cfv (cv x0) cbs) (csn (cfv (cv x0) c0g))) (λ x1 . cfv (csn (cv x1)) (cfv (cv x0) clspn))))) (proof)
Theorem df_lshyp : wceq clsh (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wa (wne (cv x1) (cfv (cv x0) cbs)) (wrex (λ x2 . wceq (cfv (cun (cv x1) (csn (cv x2))) (cfv (cv x0) clspn)) (cfv (cv x0) cbs)) (λ x2 . cfv (cv x0) cbs))) (λ x1 . cfv (cv x0) clss))) (proof)
Theorem df_lcv : wceq clcv (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . wa (wa (wcel (cv x1) (cfv (cv x0) clss)) (wcel (cv x2) (cfv (cv x0) clss))) (wa (wpss (cv x1) (cv x2)) (wn (wrex (λ x3 . wa (wpss (cv x1) (cv x3)) (wpss (cv x3) (cv x2))) (λ x3 . cfv (cv x0) clss))))))) (proof)
Theorem df_lfl : wceq clfn (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wral (λ x2 . wral (λ x3 . wral (λ x4 . wceq (cfv (co (co (cv x2) (cv x3) (cfv (cv x0) cvsca)) (cv x4) (cfv (cv x0) cplusg)) (cv x1)) (co (co (cv x2) (cfv (cv x3) (cv x1)) (cfv (cfv (cv x0) csca) cmulr)) (cfv (cv x4) (cv x1)) (cfv (cfv (cv x0) csca) cplusg))) (λ x4 . cfv (cv x0) cbs)) (λ x3 . cfv (cv x0) cbs)) (λ x2 . cfv (cfv (cv x0) csca) cbs)) (λ x1 . co (cfv (cfv (cv x0) csca) cbs) (cfv (cv x0) cbs) cmap))) (proof)
Theorem df_lkr : wceq clk (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clfn) (λ x1 . cima (ccnv (cv x1)) (csn (cfv (cfv (cv x0) csca) c0g))))) (proof)
Theorem df_ldual : wceq cld (cmpt (λ x0 . cvv) (λ x0 . cun (ctp (cop (cfv cnx cbs) (cfv (cv x0) clfn)) (cop (cfv cnx cplusg) (cres (cof (cfv (cfv (cv x0) csca) cplusg)) (cxp (cfv (cv x0) clfn) (cfv (cv x0) clfn)))) (cop (cfv cnx csca) (cfv (cfv (cv x0) csca) coppr))) (csn (cop (cfv cnx cvsca) (cmpt2 (λ x1 x2 . cfv (cfv (cv x0) csca) cbs) (λ x1 x2 . cfv (cv x0) clfn) (λ x1 x2 . co (cv x2) (cxp (cfv (cv x0) cbs) (csn (cv x1))) (cof (cfv (cfv (cv x0) csca) cmulr)))))))) (proof)