Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr5Yq..
/
6d700..
PUUSR..
/
77a99..
vout
Pr5Yq..
/
ebbec..
0.10 bars
TMbV4..
/
4098a..
ownership of
786fe..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFQx..
/
d2aae..
ownership of
cd944..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM3Q..
/
299c6..
ownership of
23f90..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKzH..
/
90edc..
ownership of
3c16d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSeA..
/
aa35a..
ownership of
9b65b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH1J..
/
6b03b..
ownership of
2db5b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQxW..
/
d7256..
ownership of
667a5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb7F..
/
813a8..
ownership of
2b4a7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUb2..
/
4fc60..
ownership of
1fbd0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMagu..
/
11947..
ownership of
4bfca..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRjP..
/
11298..
ownership of
2feb8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU12..
/
198eb..
ownership of
c2207..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGj2..
/
f66f0..
ownership of
50c52..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZjP..
/
09524..
ownership of
374bb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFaP..
/
4bb05..
ownership of
426c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHdo..
/
3f9a9..
ownership of
30238..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPng..
/
2f864..
ownership of
d6ad9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWBR..
/
951cc..
ownership of
5b99b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb4L..
/
b0044..
ownership of
0adf1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR63..
/
5a1ee..
ownership of
5e5ee..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF9q..
/
76dd6..
ownership of
06a84..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWkP..
/
21a45..
ownership of
5d1e7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTyg..
/
8216b..
ownership of
31ee4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdtA..
/
4abdc..
ownership of
3d8bb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYEB..
/
f076a..
ownership of
14d42..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUuW..
/
a90b9..
ownership of
0c660..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUBA..
/
ae23e..
ownership of
ecc14..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbWf..
/
d10b1..
ownership of
0b71b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbVE..
/
ef4ba..
ownership of
a40ca..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKrh..
/
3c329..
ownership of
2697e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU15..
/
cdf11..
ownership of
9f28a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaeq..
/
d6b79..
ownership of
f6ac5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPCJ..
/
89e17..
ownership of
c7372..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMath..
/
719c9..
ownership of
2847c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPRW..
/
a1dca..
ownership of
73d42..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFKr..
/
ffa0d..
ownership of
cbdd0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUNA7..
/
33c90..
doc published by
PrCmT..
Known
ax_c11__ax_c11_b__ax_c11n__ax_c15__ax_c9__ax_c9_b__ax_c9_b1__ax_c9_b2__ax_c9_b3__ax_c14__ax_c16__ax_riotaBAD__df_lsatoms__df_lshyp__df_lcv__df_lfl__df_lkr__df_ldual
:
∀ x0 : ο .
(
(
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 .
(
∀ x4 .
wceq
(
cv
x4
)
(
cv
x3
)
)
⟶
(
∀ x4 .
x1
x4
x3
)
⟶
∀ x4 .
x1
x2
x4
)
⟶
(
∀ x1 :
ι → ο
.
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
)
⟶
(
∀ x2 .
x1
x2
)
⟶
∀ x2 .
x1
x2
)
⟶
(
∀ x1 x2 .
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 x3 .
wn
(
∀ x4 .
wceq
(
cv
x4
)
(
cv
x2
)
)
⟶
wceq
(
cv
x3
)
(
cv
x2
)
⟶
x1
x3
⟶
∀ x4 .
wceq
(
cv
x4
)
(
cv
x2
)
⟶
x1
x4
)
⟶
(
∀ x1 x2 .
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
)
⟶
wceq
(
cv
x1
)
(
cv
x2
)
⟶
∀ x3 .
wceq
(
cv
x1
)
(
cv
x2
)
)
⟶
(
∀ x1 .
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
)
⟶
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
)
⟶
wceq
(
cv
x1
)
(
cv
x1
)
⟶
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
)
⟶
(
∀ x1 .
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
)
⟶
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
)
⟶
wceq
(
cv
x1
)
(
cv
x1
)
⟶
∀ x2 .
wceq
(
cv
x1
)
(
cv
x1
)
)
⟶
(
∀ x1 x2 .
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x3
)
)
⟶
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
wceq
(
cv
x2
)
(
cv
x1
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
(
∀ x1 x2 .
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x3
)
)
⟶
wceq
(
cv
x1
)
(
cv
x2
)
⟶
∀ x3 .
wceq
(
cv
x1
)
(
cv
x3
)
)
⟶
(
∀ x1 x2 .
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
)
⟶
wcel
(
cv
x1
)
(
cv
x2
)
⟶
∀ x3 .
wcel
(
cv
x1
)
(
cv
x2
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 x3 .
(
∀ x4 .
wceq
(
cv
x4
)
(
cv
x2
)
)
⟶
x1
x3
⟶
∀ x4 .
x1
x4
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wceq
(
crio
x1
x2
)
(
cif
(
wreu
x1
x2
)
(
cio
(
λ x3 .
wa
(
wcel
(
cv
x3
)
(
x2
x3
)
)
(
x1
x3
)
)
)
(
cfv
(
cab
(
λ x3 .
wcel
(
cv
x3
)
(
x2
x3
)
)
)
cund
)
)
)
⟶
wceq
clsa
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crn
(
cmpt
(
λ x2 .
cdif
(
cfv
(
cv
x1
)
cbs
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
(
λ x2 .
cfv
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x1
)
clspn
)
)
)
)
)
⟶
wceq
clsh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wne
(
cv
x2
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wrex
(
λ x3 .
wceq
(
cfv
(
cun
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
(
cfv
(
cv
x1
)
clspn
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
clss
)
)
)
⟶
wceq
clcv
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wa
(
wcel
(
cv
x2
)
(
cfv
(
cv
x1
)
clss
)
)
(
wcel
(
cv
x3
)
(
cfv
(
cv
x1
)
clss
)
)
)
(
wa
(
wpss
(
cv
x2
)
(
cv
x3
)
)
(
wn
(
wrex
(
λ x4 .
wa
(
wpss
(
cv
x2
)
(
cv
x4
)
)
(
wpss
(
cv
x4
)
(
cv
x3
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
clss
)
)
)
)
)
)
)
⟶
wceq
clfn
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x2
)
)
(
co
(
co
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
cmulr
)
)
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
cplusg
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
)
(
λ x2 .
co
(
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
cmap
)
)
)
⟶
wceq
clk
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clfn
)
(
λ x2 .
cima
(
ccnv
(
cv
x2
)
)
(
csn
(
cfv
(
cfv
(
cv
x1
)
csca
)
c0g
)
)
)
)
)
⟶
wceq
cld
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x1
)
clfn
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cres
(
cof
(
cfv
(
cfv
(
cv
x1
)
csca
)
cplusg
)
)
(
cxp
(
cfv
(
cv
x1
)
clfn
)
(
cfv
(
cv
x1
)
clfn
)
)
)
)
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
coppr
)
)
)
(
csn
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
clfn
)
(
λ x2 x3 .
co
(
cv
x3
)
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
csn
(
cv
x2
)
)
)
(
cof
(
cfv
(
cfv
(
cv
x1
)
csca
)
cmulr
)
)
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
ax_c11
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
)
⟶
(
∀ x3 .
x0
x3
x2
)
⟶
∀ x3 .
x0
x1
x3
(proof)
Theorem
ax_c11_b
:
∀ x0 :
ι → ο
.
(
∀ x1 .
wceq
(
cv
x1
)
(
cv
x1
)
)
⟶
(
∀ x1 .
x0
x1
)
⟶
∀ x1 .
x0
x1
(proof)
Theorem
ax_c11n
:
∀ x0 x1 .
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
)
⟶
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
(proof)
Theorem
ax_c15
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
wceq
(
cv
x2
)
(
cv
x1
)
⟶
x0
x2
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
⟶
x0
x3
(proof)
Theorem
ax_c9
:
∀ x0 x1 .
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
)
⟶
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
)
⟶
wceq
(
cv
x0
)
(
cv
x1
)
⟶
∀ x2 .
wceq
(
cv
x0
)
(
cv
x1
)
(proof)
Theorem
ax_c9_b
:
∀ x0 .
wn
(
∀ x1 .
wceq
(
cv
x1
)
(
cv
x1
)
)
⟶
wn
(
∀ x1 .
wceq
(
cv
x1
)
(
cv
x1
)
)
⟶
wceq
(
cv
x0
)
(
cv
x0
)
⟶
∀ x1 .
wceq
(
cv
x1
)
(
cv
x1
)
(proof)
Theorem
ax_c9_b1
:
∀ x0 .
wn
(
∀ x1 .
wceq
(
cv
x1
)
(
cv
x0
)
)
⟶
wn
(
∀ x1 .
wceq
(
cv
x1
)
(
cv
x0
)
)
⟶
wceq
(
cv
x0
)
(
cv
x0
)
⟶
∀ x1 .
wceq
(
cv
x0
)
(
cv
x0
)
(proof)
Theorem
ax_c9_b2
:
∀ x0 x1 .
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
)
⟶
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
)
⟶
wceq
(
cv
x1
)
(
cv
x0
)
⟶
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
(proof)
Theorem
ax_c9_b3
:
∀ x0 x1 .
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
)
⟶
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
)
⟶
wceq
(
cv
x0
)
(
cv
x1
)
⟶
∀ x2 .
wceq
(
cv
x0
)
(
cv
x2
)
(proof)
Theorem
ax_c14
:
∀ x0 x1 .
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
)
⟶
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
)
⟶
wcel
(
cv
x0
)
(
cv
x1
)
⟶
∀ x2 .
wcel
(
cv
x0
)
(
cv
x1
)
(proof)
Theorem
ax_c16
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
x0
x2
⟶
∀ x3 .
x0
x3
(proof)
Theorem
ax_riotaBAD
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wceq
(
crio
x0
x1
)
(
cif
(
wreu
x0
x1
)
(
cio
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
x1
x2
)
)
(
x0
x2
)
)
)
(
cfv
(
cab
(
λ x2 .
wcel
(
cv
x2
)
(
x1
x2
)
)
)
cund
)
)
(proof)
Theorem
df_lsatoms
:
wceq
clsa
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crn
(
cmpt
(
λ x1 .
cdif
(
cfv
(
cv
x0
)
cbs
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
(
λ x1 .
cfv
(
csn
(
cv
x1
)
)
(
cfv
(
cv
x0
)
clspn
)
)
)
)
)
(proof)
Theorem
df_lshyp
:
wceq
clsh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wne
(
cv
x1
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wrex
(
λ x2 .
wceq
(
cfv
(
cun
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
(
cfv
(
cv
x0
)
clspn
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
clss
)
)
)
(proof)
Theorem
df_lcv
:
wceq
clcv
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
(
cfv
(
cv
x0
)
clss
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x0
)
clss
)
)
)
(
wa
(
wpss
(
cv
x1
)
(
cv
x2
)
)
(
wn
(
wrex
(
λ x3 .
wa
(
wpss
(
cv
x1
)
(
cv
x3
)
)
(
wpss
(
cv
x3
)
(
cv
x2
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
clss
)
)
)
)
)
)
)
(proof)
Theorem
df_lfl
:
wceq
clfn
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cvsca
)
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x1
)
)
(
co
(
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cfv
(
cv
x0
)
csca
)
cmulr
)
)
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cfv
(
cfv
(
cv
x0
)
csca
)
cplusg
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
)
(
λ x1 .
co
(
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
cmap
)
)
)
(proof)
Theorem
df_lkr
:
wceq
clk
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clfn
)
(
λ x1 .
cima
(
ccnv
(
cv
x1
)
)
(
csn
(
cfv
(
cfv
(
cv
x0
)
csca
)
c0g
)
)
)
)
)
(proof)
Theorem
df_ldual
:
wceq
cld
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x0
)
clfn
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cres
(
cof
(
cfv
(
cfv
(
cv
x0
)
csca
)
cplusg
)
)
(
cxp
(
cfv
(
cv
x0
)
clfn
)
(
cfv
(
cv
x0
)
clfn
)
)
)
)
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cfv
(
cv
x0
)
csca
)
coppr
)
)
)
(
csn
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x1 x2 .
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
clfn
)
(
λ x1 x2 .
co
(
cv
x2
)
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
csn
(
cv
x1
)
)
)
(
cof
(
cfv
(
cfv
(
cv
x0
)
csca
)
cmulr
)
)
)
)
)
)
)
)
(proof)