Search for blocks/addresses/...
Proofgold Asset
asset id
9eeef6c5a31df91299cc95507be61fcd90ef74d0f70c18b19ba6f51191fe45dd
asset hash
49e19d47ba85baf0f712175c35fa1f4485366f890abb58d566075017b23e7e02
bday / block
28412
tx
4317c..
preasset
doc published by
PrQUS..
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Definition
pair_tag
pair_tag
:=
λ x0 x1 x2 .
binunion
x1
{
SetAdjoin
x3
x0
|x3 ∈
x2
}
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
ctagged_notin_F
ctagged_notin_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
nIn
(
SetAdjoin
x3
x0
)
x2
...
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Theorem
ctagged_eqE_Subq
ctagged_eqE_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
SetAdjoin
x4
x0
=
SetAdjoin
x5
x0
⟶
x4
⊆
x5
...
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Theorem
ctagged_eqE_eq
ctagged_eqE_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x3
⟶
SetAdjoin
x4
x0
=
SetAdjoin
x5
x0
⟶
x4
=
x5
...
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
pair_tag_prop_1_Subq
pair_tag_prop_1_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x2
⊆
x4
...
Theorem
pair_tag_prop_1
pair_tag_prop_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
x1
x4
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x2
=
x4
...
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
pair_tag_prop_2_Subq
pair_tag_prop_2_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x3
⊆
x5
...
Theorem
pair_tag_prop_2
pair_tag_prop_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x3
=
x5
...
Known
Repl_Empty
Repl_Empty
:
∀ x0 :
ι → ι
.
prim5
0
x0
=
0
Known
binunion_idr
binunion_idr
:
∀ x0 .
binunion
x0
0
=
x0
Theorem
pair_tag_0
pair_tag_0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
pair_tag
x0
x2
0
=
x2
...
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
CD_carr
CD_carr
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
∀ x3 : ο .
(
∀ x4 .
and
(
x1
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x1
x6
)
(
x2
=
pair_tag
x0
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
CD_carr_I
CD_carr_I
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_carr
x0
x1
(
pair_tag
x0
x2
x3
)
...
Theorem
CD_carr_E
CD_carr_E
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x2
=
pair_tag
x0
x4
x5
⟶
x3
(
pair_tag
x0
x4
x5
)
)
⟶
x3
x2
...
Theorem
CD_carr_0ext
CD_carr_0ext
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_carr
x0
x1
x2
...
Definition
CD_proj0
CD_proj0
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
prim0
(
λ x3 .
and
(
x1
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x1
x5
)
(
x2
=
pair_tag
x0
x3
x5
)
⟶
x4
)
⟶
x4
)
)
Definition
CD_proj1
CD_proj1
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
prim0
(
λ x3 .
and
(
x1
x3
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
x3
)
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
CD_proj0_1
CD_proj0_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
and
(
x1
(
CD_proj0
x0
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x1
x4
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
x4
)
⟶
x3
)
⟶
x3
)
...
Theorem
CD_proj0_2
CD_proj0_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_proj0
x0
x1
(
pair_tag
x0
x2
x3
)
=
x2
...
Theorem
CD_proj1_1
CD_proj1_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
and
(
x1
(
CD_proj1
x0
x1
x2
)
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
(
CD_proj1
x0
x1
x2
)
)
...
Theorem
CD_proj1_2
CD_proj1_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_proj1
x0
x1
(
pair_tag
x0
x2
x3
)
=
x3
...
Theorem
CD_proj0R
CD_proj0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x1
(
CD_proj0
x0
x1
x2
)
...
Theorem
CD_proj1R
CD_proj1R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x1
(
CD_proj1
x0
x1
x2
)
...
Theorem
CD_proj0proj1_eta
CD_proj0proj1_eta
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
(
CD_proj1
x0
x1
x2
)
...
Theorem
CD_proj0proj1_split
CD_proj0proj1_split
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
CD_carr
x0
x1
x2
⟶
CD_carr
x0
x1
x3
⟶
CD_proj0
x0
x1
x2
=
CD_proj0
x0
x1
x3
⟶
CD_proj1
x0
x1
x2
=
CD_proj1
x0
x1
x3
⟶
x2
=
x3
...
Theorem
CD_proj0_F
CD_proj0_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_proj0
x0
x1
x2
=
x2
...
Theorem
CD_proj1_F
CD_proj1_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_proj1
x0
x1
x2
=
0
...
Definition
CD_minus
CD_minus
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 :
ι → ι
.
λ x3 .
pair_tag
x0
(
x2
(
CD_proj0
x0
x1
x3
)
)
(
x2
(
CD_proj1
x0
x1
x3
)
)
Definition
CD_conj
CD_conj
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 x3 :
ι → ι
.
λ x4 .
pair_tag
x0
(
x3
(
CD_proj0
x0
x1
x4
)
)
(
x2
(
CD_proj1
x0
x1
x4
)
)
Definition
CD_add
CD_add
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 :
ι →
ι → ι
.
λ x3 x4 .
pair_tag
x0
(
x2
(
CD_proj0
x0
x1
x3
)
(
CD_proj0
x0
x1
x4
)
)
(
x2
(
CD_proj1
x0
x1
x3
)
(
CD_proj1
x0
x1
x4
)
)
Definition
CD_mul
CD_mul
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 x3 :
ι → ι
.
λ x4 x5 :
ι →
ι → ι
.
λ x6 x7 .
pair_tag
x0
(
x4
(
x5
(
CD_proj0
x0
x1
x6
)
(
CD_proj0
x0
x1
x7
)
)
(
x2
(
x5
(
x3
(
CD_proj1
x0
x1
x7
)
)
(
CD_proj1
x0
x1
x6
)
)
)
)
(
x4
(
x5
(
CD_proj1
x0
x1
x7
)
(
CD_proj0
x0
x1
x6
)
)
(
x5
(
CD_proj1
x0
x1
x6
)
(
x3
(
CD_proj0
x0
x1
x7
)
)
)
)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
CD_exp_nat
CD_exp_nat
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 x3 :
ι → ι
.
λ x4 x5 :
ι →
ι → ι
.
λ x6 .
nat_primrec
1
(
λ x7 .
CD_mul
x0
x1
x2
x3
x4
x5
x6
)
Theorem
CD_minus_CD
CD_minus_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
(
CD_minus
x0
x1
x2
x3
)
...
Theorem
CD_minus_proj0
CD_minus_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_proj0
x0
x1
(
CD_minus
x0
x1
x2
x3
)
=
x2
(
CD_proj0
x0
x1
x3
)
...
Theorem
CD_minus_proj1
CD_minus_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_proj1
x0
x1
(
CD_minus
x0
x1
x2
x3
)
=
x2
(
CD_proj1
x0
x1
x3
)
...
Theorem
CD_conj_CD
CD_conj_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
...
Theorem
CD_conj_proj0
CD_conj_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_proj0
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
=
x3
(
CD_proj0
x0
x1
x4
)
...
Theorem
CD_conj_proj1
CD_conj_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_proj1
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj1
x0
x1
x4
)
...
Theorem
CD_add_CD
CD_add_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
...
Theorem
CD_add_proj0
CD_add_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_proj0
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj0
x0
x1
x3
)
(
CD_proj0
x0
x1
x4
)
...
Theorem
CD_add_proj1
CD_add_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_proj1
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj1
x0
x1
x3
)
(
CD_proj1
x0
x1
x4
)
...
Theorem
CD_mul_CD
CD_mul_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
...
Theorem
CD_mul_proj0
CD_mul_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_proj0
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(
x5
(
CD_proj0
x0
x1
x6
)
(
CD_proj0
x0
x1
x7
)
)
(
x2
(
x5
(
x3
(
CD_proj1
x0
x1
x7
)
)
(
CD_proj1
x0
x1
x6
)
)
)
...
Theorem
CD_mul_proj1
CD_mul_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_proj1
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(
x5
(
CD_proj1
x0
x1
x7
)
(
CD_proj0
x0
x1
x6
)
)
(
x5
(
CD_proj1
x0
x1
x6
)
(
x3
(
CD_proj0
x0
x1
x7
)
)
)
...
Theorem
CD_minus_F_eq
CD_minus_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
∀ x3 .
x1
x3
⟶
CD_minus
x0
x1
x2
x3
=
x2
x3
...
Theorem
CD_conj_F_eq
CD_conj_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
∀ x3 :
ι → ι
.
∀ x4 .
x1
x4
⟶
CD_conj
x0
x1
x2
x3
x4
=
x3
x4
...
Theorem
CD_add_F_eq
CD_add_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
x2
0
0
=
0
⟶
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
CD_add
x0
x1
x2
x3
x4
=
x2
x3
x4
...
Theorem
CD_mul_F_eq
CD_mul_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
x2
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
=
x5
x6
x7
...
Theorem
CD_minus_invol
CD_minus_invol
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x2
x3
)
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_minus
x0
x1
x2
(
CD_minus
x0
x1
x2
x3
)
=
x3
...
Theorem
CD_conj_invol
CD_conj_invol
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x2
(
x2
x4
)
=
x4
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x3
x4
)
=
x4
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_conj
x0
x1
x2
x3
(
CD_conj
x0
x1
x2
x3
x4
)
=
x4
...
Theorem
CD_conj_minus
CD_conj_minus
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x2
x4
)
=
x2
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_conj
x0
x1
x2
x3
(
CD_minus
x0
x1
x2
x4
)
=
CD_minus
x0
x1
x2
(
CD_conj
x0
x1
x2
x3
x4
)
...
Theorem
CD_minus_add
CD_minus_add
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x1
(
x3
x4
x5
)
)
⟶
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x2
(
x3
x4
x5
)
=
x3
(
x2
x4
)
(
x2
x5
)
)
⟶
∀ x4 x5 .
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
x5
⟶
CD_minus
x0
x1
x2
(
CD_add
x0
x1
x3
x4
x5
)
=
CD_add
x0
x1
x3
(
CD_minus
x0
x1
x2
x4
)
(
CD_minus
x0
x1
x2
x5
)
...
Theorem
CD_conj_add
CD_conj_add
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x1
x5
⟶
x1
(
x2
x5
)
)
⟶
(
∀ x5 .
x1
x5
⟶
x1
(
x3
x5
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x1
(
x4
x5
x6
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x2
(
x4
x5
x6
)
=
x4
(
x2
x5
)
(
x2
x6
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x3
(
x4
x5
x6
)
=
x4
(
x3
x5
)
(
x3
x6
)
)
⟶
∀ x5 x6 .
CD_carr
x0
x1
x5
⟶
CD_carr
x0
x1
x6
⟶
CD_conj
x0
x1
x2
x3
(
CD_add
x0
x1
x4
x5
x6
)
=
CD_add
x0
x1
x4
(
CD_conj
x0
x1
x2
x3
x5
)
(
CD_conj
x0
x1
x2
x3
x6
)
...
Theorem
CD_add_com
CD_add_com
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x2
x3
x4
=
x2
x4
x3
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x2
x3
x4
=
CD_add
x0
x1
x2
x4
x3
...
Theorem
CD_add_assoc
CD_add_assoc
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
x2
(
x2
x3
x4
)
x5
=
x2
x3
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
x5
⟶
CD_add
x0
x1
x2
(
CD_add
x0
x1
x2
x3
x4
)
x5
=
CD_add
x0
x1
x2
x3
(
CD_add
x0
x1
x2
x4
x5
)
...
Theorem
CD_add_0R
CD_add_0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x3 .
x1
x3
⟶
x2
x3
0
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_add
x0
x1
x2
x3
0
=
x3
...
Theorem
CD_add_0L
CD_add_0L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x3 .
x1
x3
⟶
x2
0
x3
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_add
x0
x1
x2
0
x3
=
x3
...
Theorem
CD_add_minus_linv
CD_add_minus_linv
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x2
x4
)
x4
=
0
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x3
(
CD_minus
x0
x1
x2
x4
)
x4
=
0
...
Theorem
CD_add_minus_rinv
CD_add_minus_rinv
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
x4
(
x2
x4
)
=
0
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x3
x4
(
CD_minus
x0
x1
x2
x4
)
=
0
...
Theorem
CD_mul_0R
CD_mul_0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x4
0
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
0
=
0
...
Theorem
CD_mul_0L
CD_mul_0L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
x2
0
=
0
⟶
x4
0
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
0
x6
=
0
...
Theorem
CD_mul_1R
CD_mul_1R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
1
=
x6
...
Theorem
CD_mul_1L
CD_mul_1L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
x2
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
1
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
1
x6
=
x6
...
Theorem
CD_conj_mul
CD_conj_mul
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x2
(
x2
x6
)
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x3
x6
)
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x2
x6
)
=
x2
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x4
x6
x7
)
=
x4
(
x3
x6
)
(
x3
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x5
x6
x7
)
=
x5
(
x3
x7
)
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_conj
x0
x1
x2
x3
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_conj
x0
x1
x2
x3
x7
)
(
CD_conj
x0
x1
x2
x3
x6
)
...
Theorem
CD_add_mul_distrR
CD_add_mul_distrR
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x4
(
x4
x6
x7
)
x8
=
x4
x6
(
x4
x7
x8
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
x6
(
x4
x7
x8
)
=
x4
(
x5
x6
x7
)
(
x5
x6
x8
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
(
x4
x6
x7
)
x8
=
x4
(
x5
x6
x8
)
(
x5
x7
x8
)
)
⟶
∀ x6 x7 x8 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
x8
⟶
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_add
x0
x1
x4
x6
x7
)
x8
=
CD_add
x0
x1
x4
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x8
)
(
CD_mul
x0
x1
x2
x3
x4
x5
x7
x8
)
...
Theorem
CD_add_mul_distrL
CD_add_mul_distrL
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x4
x6
x7
)
=
x4
(
x3
x6
)
(
x3
x7
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x4
(
x4
x6
x7
)
x8
=
x4
x6
(
x4
x7
x8
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
x6
(
x4
x7
x8
)
=
x4
(
x5
x6
x7
)
(
x5
x6
x8
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
(
x4
x6
x7
)
x8
=
x4
(
x5
x6
x8
)
(
x5
x7
x8
)
)
⟶
∀ x6 x7 x8 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
x8
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_add
x0
x1
x4
x7
x8
)
=
CD_add
x0
x1
x4
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x8
)
...
Theorem
CD_minus_mul_distrR
CD_minus_mul_distrR
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x2
x6
)
=
x2
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_minus
x0
x1
x2
x7
)
=
CD_minus
x0
x1
x2
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
...
Theorem
CD_minus_mul_distrL
CD_minus_mul_distrL
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_minus
x0
x1
x2
x6
)
x7
=
CD_minus
x0
x1
x2
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
...
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
CD_exp_nat_0
CD_exp_nat_0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 .
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
0
=
1
...
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Theorem
CD_exp_nat_S
CD_exp_nat_S
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 .
nat_p
x7
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
(
ordsucc
x7
)
=
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
x7
)
...
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Theorem
CD_exp_nat_CD
CD_exp_nat_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
x1
0
⟶
x1
1
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
∀ x7 .
nat_p
x7
⟶
CD_carr
x0
x1
(
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
x7
)
...