∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 : ι → ι → ι . (∀ x5 . x1 x5 ⟶ x1 (x2 x5)) ⟶ (∀ x5 . x1 x5 ⟶ x1 (x3 x5)) ⟶ (∀ x5 x6 . x1 x5 ⟶ x1 x6 ⟶ x1 (x4 x5 x6)) ⟶ (∀ x5 x6 . x1 x5 ⟶ x1 x6 ⟶ x2 (x4 x5 x6) = x4 (x2 x5) (x2 x6)) ⟶ (∀ x5 x6 . x1 x5 ⟶ x1 x6 ⟶ x3 (x4 x5 x6) = x4 (x3 x5) (x3 x6)) ⟶ ∀ x5 x6 . CD_carr x0 x1 x5 ⟶ CD_carr x0 x1 x6 ⟶ CD_conj x0 x1 x2 x3 (CD_add x0 x1 x4 x5 x6) = CD_add x0 x1 x4 (CD_conj x0 x1 x2 x3 x5) (CD_conj x0 x1 x2 x3 x6) |
|
|
|
|
|
|
|
|
|
|