Search for blocks/addresses/...

Proofgold Asset

asset id
4e3eead2fc0f7bb4722a6cf6779bd5f9205fc9caa3b82e193ba42ff50488ce8f
asset hash
50d03f6e89fa3f7d8486da5106ace5d402b269a854b9802aaf1a6059d08bcc10
bday / block
28464
tx
43801..
preasset
doc published by PrQUS..
Param CSNoCSNo : ιο
Param nInnIn : ιιο
Param SingSing : ιι
Param ordsuccordsucc : ιι
Param nat_pnat_p : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param ordinalordinal : ιο
Param andand : οοο
Definition ExtendedSNoElt_ExtendedSNoElt_ := λ x0 x1 . ∀ x2 . x2prim3 x1or (ordinal x2) (∀ x3 : ο . (∀ x4 . and (x4x0) (x2 = Sing x4)x3)x3)
Known Sing_nat_fresh_extensionSing_nat_fresh_extension : ∀ x0 . nat_p x01x0∀ x1 . ExtendedSNoElt_ x0 x1∀ x2 . x2x1nIn (Sing x0) x2
Known nat_3nat_3 : nat_p 3
Known In_1_3In_1_3 : 13
Known CSNo_ExtendedSNoElt_3CSNo_ExtendedSNoElt_3 : ∀ x0 . CSNo x0ExtendedSNoElt_ 3 x0
Theorem quaternion_tag_freshquaternion_tag_fresh : ∀ x0 . CSNo x0∀ x1 . x1x0nIn (Sing 3) x1 (proof)
Param binunionbinunion : ιιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Definition pair_tagpair_tag := λ x0 x1 x2 . binunion x1 {SetAdjoin x3 x0|x3 ∈ x2}
Definition CSNo_pairCSNo_pair := pair_tag (Sing 3)
Known pair_tag_0pair_tag_0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . pair_tag x0 x2 0 = x2
Theorem CSNo_pair_0CSNo_pair_0 : ∀ x0 . CSNo_pair x0 0 = x0 (proof)
Known pair_tag_prop_1pair_tag_prop_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 x4 x5 . x1 x2x1 x4pair_tag x0 x2 x3 = pair_tag x0 x4 x5x2 = x4
Theorem CSNo_pair_prop_1CSNo_pair_prop_1 : ∀ x0 x1 x2 x3 . CSNo x0CSNo x2CSNo_pair x0 x1 = CSNo_pair x2 x3x0 = x2 (proof)
Known pair_tag_prop_2pair_tag_prop_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 x4 x5 . x1 x2x1 x3x1 x4x1 x5pair_tag x0 x2 x3 = pair_tag x0 x4 x5x3 = x5
Theorem CSNo_pair_prop_2CSNo_pair_prop_2 : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3CSNo_pair x0 x1 = CSNo_pair x2 x3x1 = x3 (proof)
Param CD_carrCD_carr : ι(ιο) → ιο
Definition HSNoHSNo := CD_carr (Sing 3) CSNo
Known CD_carr_ICD_carr_I : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_carr x0 x1 (pair_tag x0 x2 x3)
Theorem HSNo_IHSNo_I : ∀ x0 x1 . CSNo x0CSNo x1HSNo (CSNo_pair x0 x1) (proof)
Known CD_carr_ECD_carr_E : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2∀ x3 : ι → ο . (∀ x4 x5 . x1 x4x1 x5x2 = pair_tag x0 x4 x5x3 (pair_tag x0 x4 x5))x3 x2
Theorem HSNo_EHSNo_E : ∀ x0 . HSNo x0∀ x1 : ι → ο . (∀ x2 x3 . CSNo x2CSNo x3x0 = CSNo_pair x2 x3x1 (CSNo_pair x2 x3))x1 x0 (proof)
Known CD_carr_0extCD_carr_0ext : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_carr x0 x1 x2
Known CSNo_0CSNo_0 : CSNo 0
Theorem CSNo_HSNoCSNo_HSNo : ∀ x0 . CSNo x0HSNo x0 (proof)
Theorem HSNo_0HSNo_0 : HSNo 0 (proof)
Known CSNo_1CSNo_1 : CSNo 1
Theorem HSNo_1HSNo_1 : HSNo 1 (proof)
Known UnionE_impredUnionE_impred : ∀ x0 x1 . x1prim3 x0∀ x2 : ο . (∀ x3 . x1x3x3x0x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Param SubqSubq : ιιο
Known extension_SNoElt_monextension_SNoElt_mon : ∀ x0 x1 . x0x1∀ x2 . ExtendedSNoElt_ x0 x2ExtendedSNoElt_ x1 x2
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known UnionIUnionI : ∀ x0 x1 x2 . x1x2x2x0x1prim3 x0
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known In_3_4In_3_4 : 34
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Theorem HSNo_ExtendedSNoElt_4HSNo_ExtendedSNoElt_4 : ∀ x0 . HSNo x0ExtendedSNoElt_ 4 x0 (proof)
Definition Quaternion_jQuaternion_j := CSNo_pair 0 1
Param Complex_iComplex_i : ι
Definition Quaternion_kQuaternion_k := CSNo_pair 0 Complex_i
Param CD_proj0CD_proj0 : ι(ιο) → ιι
Definition HSNo_proj0HSNo_proj0 := CD_proj0 (Sing 3) CSNo
Param CD_proj1CD_proj1 : ι(ιο) → ιι
Definition HSNo_proj1HSNo_proj1 := CD_proj1 (Sing 3) CSNo
Known CD_proj0_1CD_proj0_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2and (x1 (CD_proj0 x0 x1 x2)) (∀ x3 : ο . (∀ x4 . and (x1 x4) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) x4)x3)x3)
Theorem HSNo_proj0_1HSNo_proj0_1 : ∀ x0 . HSNo x0and (CSNo (HSNo_proj0 x0)) (∀ x1 : ο . (∀ x2 . and (CSNo x2) (x0 = CSNo_pair (HSNo_proj0 x0) x2)x1)x1) (proof)
Known CD_proj0_2CD_proj0_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_proj0 x0 x1 (pair_tag x0 x2 x3) = x2
Theorem HSNo_proj0_2HSNo_proj0_2 : ∀ x0 x1 . CSNo x0CSNo x1HSNo_proj0 (CSNo_pair x0 x1) = x0 (proof)
Known CD_proj1_1CD_proj1_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2and (x1 (CD_proj1 x0 x1 x2)) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) (CD_proj1 x0 x1 x2))
Theorem HSNo_proj1_1HSNo_proj1_1 : ∀ x0 . HSNo x0and (CSNo (HSNo_proj1 x0)) (x0 = CSNo_pair (HSNo_proj0 x0) (HSNo_proj1 x0)) (proof)
Known CD_proj1_2CD_proj1_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_proj1 x0 x1 (pair_tag x0 x2 x3) = x3
Theorem HSNo_proj1_2HSNo_proj1_2 : ∀ x0 x1 . CSNo x0CSNo x1HSNo_proj1 (CSNo_pair x0 x1) = x1 (proof)
Known CD_proj0RCD_proj0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x1 (CD_proj0 x0 x1 x2)
Theorem HSNo_proj0RHSNo_proj0R : ∀ x0 . HSNo x0CSNo (HSNo_proj0 x0) (proof)
Known CD_proj1RCD_proj1R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x1 (CD_proj1 x0 x1 x2)
Theorem HSNo_proj1RHSNo_proj1R : ∀ x0 . HSNo x0CSNo (HSNo_proj1 x0) (proof)
Known CD_proj0proj1_etaCD_proj0proj1_eta : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x2 = pair_tag x0 (CD_proj0 x0 x1 x2) (CD_proj1 x0 x1 x2)
Theorem HSNo_proj0p1HSNo_proj0p1 : ∀ x0 . HSNo x0x0 = CSNo_pair (HSNo_proj0 x0) (HSNo_proj1 x0) (proof)
Known CD_proj0proj1_splitCD_proj0proj1_split : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . CD_carr x0 x1 x2CD_carr x0 x1 x3CD_proj0 x0 x1 x2 = CD_proj0 x0 x1 x3CD_proj1 x0 x1 x2 = CD_proj1 x0 x1 x3x2 = x3
Theorem HSNo_proj0proj1_splitHSNo_proj0proj1_split : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj0 x0 = HSNo_proj0 x1HSNo_proj1 x0 = HSNo_proj1 x1x0 = x1 (proof)
Param CSNoLevCSNoLev : ιι
Definition HSNoLevHSNoLev := λ x0 . binunion (CSNoLev (HSNo_proj0 x0)) (CSNoLev (HSNo_proj1 x0))
Known ordinal_binunionordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Known CSNoLev_ordinalCSNoLev_ordinal : ∀ x0 . CSNo x0ordinal (CSNoLev x0)
Theorem HSNoLev_ordinalHSNoLev_ordinal : ∀ x0 . HSNo x0ordinal (HSNoLev x0) (proof)
Param CD_minusCD_minus : ι(ιο) → (ιι) → ιι
Param minus_CSNominus_CSNo : ιι
Definition minus_HSNominus_HSNo := CD_minus (Sing 3) CSNo minus_CSNo
Param CD_conjCD_conj : ι(ιο) → (ιι) → (ιι) → ιι
Param conj_CSNoconj_CSNo : ιι
Definition conj_HSNoconj_HSNo := CD_conj (Sing 3) CSNo minus_CSNo conj_CSNo
Param CD_addCD_add : ι(ιο) → (ιιι) → ιιι
Param add_CSNoadd_CSNo : ιιι
Definition add_HSNoadd_HSNo := CD_add (Sing 3) CSNo add_CSNo
Param CD_mulCD_mul : ι(ιο) → (ιι) → (ιι) → (ιιι) → (ιιι) → ιιι
Param mul_CSNomul_CSNo : ιιι
Definition mul_HSNomul_HSNo := CD_mul (Sing 3) CSNo minus_CSNo conj_CSNo add_CSNo mul_CSNo
Param CD_exp_natCD_exp_nat : ι(ιο) → (ιι) → (ιι) → (ιιι) → (ιιι) → ιιι
Definition exp_HSNo_natexp_HSNo_nat := CD_exp_nat (Sing 3) CSNo minus_CSNo conj_CSNo add_CSNo mul_CSNo
Known CSNo_Complex_iCSNo_Complex_i : CSNo Complex_i
Theorem HSNo_Complex_iHSNo_Complex_i : HSNo Complex_i (proof)
Theorem HSNo_Quaternion_jHSNo_Quaternion_j : HSNo Quaternion_j (proof)
Theorem HSNo_Quaternion_kHSNo_Quaternion_k : HSNo Quaternion_k (proof)
Known CD_minus_CDCD_minus_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_carr x0 x1 (CD_minus x0 x1 x2 x3)
Known CSNo_minus_CSNoCSNo_minus_CSNo : ∀ x0 . CSNo x0CSNo (minus_CSNo x0)
Theorem HSNo_minus_HSNoHSNo_minus_HSNo : ∀ x0 . HSNo x0HSNo (minus_HSNo x0) (proof)
Known CD_minus_proj0CD_minus_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_proj0 x0 x1 (CD_minus x0 x1 x2 x3) = x2 (CD_proj0 x0 x1 x3)
Theorem minus_HSNo_proj0minus_HSNo_proj0 : ∀ x0 . HSNo x0HSNo_proj0 (minus_HSNo x0) = minus_CSNo (HSNo_proj0 x0) (proof)
Known CD_minus_proj1CD_minus_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_proj1 x0 x1 (CD_minus x0 x1 x2 x3) = x2 (CD_proj1 x0 x1 x3)
Theorem minus_HSNo_proj1minus_HSNo_proj1 : ∀ x0 . HSNo x0HSNo_proj1 (minus_HSNo x0) = minus_CSNo (HSNo_proj1 x0) (proof)
Known CD_conj_CDCD_conj_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_carr x0 x1 (CD_conj x0 x1 x2 x3 x4)
Known CSNo_conj_CSNoCSNo_conj_CSNo : ∀ x0 . CSNo x0CSNo (conj_CSNo x0)
Theorem HSNo_conj_HSNoHSNo_conj_HSNo : ∀ x0 . HSNo x0HSNo (conj_HSNo x0) (proof)
Known CD_conj_proj0CD_conj_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_proj0 x0 x1 (CD_conj x0 x1 x2 x3 x4) = x3 (CD_proj0 x0 x1 x4)
Theorem conj_HSNo_proj0conj_HSNo_proj0 : ∀ x0 . HSNo x0HSNo_proj0 (conj_HSNo x0) = conj_CSNo (HSNo_proj0 x0) (proof)
Known CD_conj_proj1CD_conj_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_proj1 x0 x1 (CD_conj x0 x1 x2 x3 x4) = x2 (CD_proj1 x0 x1 x4)
Theorem conj_HSNo_proj1conj_HSNo_proj1 : ∀ x0 . HSNo x0HSNo_proj1 (conj_HSNo x0) = minus_CSNo (HSNo_proj1 x0) (proof)
Known CD_add_CDCD_add_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_carr x0 x1 (CD_add x0 x1 x2 x3 x4)
Known CSNo_add_CSNoCSNo_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (add_CSNo x0 x1)
Theorem HSNo_add_HSNoHSNo_add_HSNo : ∀ x0 x1 . HSNo x0HSNo x1HSNo (add_HSNo x0 x1) (proof)
Known CD_add_proj0CD_add_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_proj0 x0 x1 (CD_add x0 x1 x2 x3 x4) = x2 (CD_proj0 x0 x1 x3) (CD_proj0 x0 x1 x4)
Theorem add_HSNo_proj0add_HSNo_proj0 : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj0 (add_HSNo x0 x1) = add_CSNo (HSNo_proj0 x0) (HSNo_proj0 x1) (proof)
Known CD_add_proj1CD_add_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_proj1 x0 x1 (CD_add x0 x1 x2 x3 x4) = x2 (CD_proj1 x0 x1 x3) (CD_proj1 x0 x1 x4)
Theorem add_HSNo_proj1add_HSNo_proj1 : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj1 (add_HSNo x0 x1) = add_CSNo (HSNo_proj1 x0) (HSNo_proj1 x1) (proof)
Known CD_mul_CDCD_mul_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Known CSNo_mul_CSNoCSNo_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (mul_CSNo x0 x1)
Theorem HSNo_mul_HSNoHSNo_mul_HSNo : ∀ x0 x1 . HSNo x0HSNo x1HSNo (mul_HSNo x0 x1) (proof)
Known CD_mul_proj0CD_mul_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_proj0 x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6)))
Theorem mul_HSNo_proj0mul_HSNo_proj0 : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj0 (mul_HSNo x0 x1) = add_CSNo (mul_CSNo (HSNo_proj0 x0) (HSNo_proj0 x1)) (minus_CSNo (mul_CSNo (conj_CSNo (HSNo_proj1 x1)) (HSNo_proj1 x0))) (proof)
Known CD_mul_proj1CD_mul_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_proj1 x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7)))
Theorem mul_HSNo_proj1mul_HSNo_proj1 : ∀ x0 x1 . HSNo x0HSNo x1HSNo_proj1 (mul_HSNo x0 x1) = add_CSNo (mul_CSNo (HSNo_proj1 x1) (HSNo_proj0 x0)) (mul_CSNo (HSNo_proj1 x0) (conj_CSNo (HSNo_proj0 x1))) (proof)
Known CD_proj0_FCD_proj0_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_proj0 x0 x1 x2 = x2
Theorem CSNo_HSNo_proj0CSNo_HSNo_proj0 : ∀ x0 . CSNo x0HSNo_proj0 x0 = x0 (proof)
Known CD_proj1_FCD_proj1_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_proj1 x0 x1 x2 = 0
Theorem CSNo_HSNo_proj1CSNo_HSNo_proj1 : ∀ x0 . CSNo x0HSNo_proj1 x0 = 0 (proof)
Theorem HSNo_p0_0HSNo_p0_0 : HSNo_proj0 0 = 0 (proof)
Theorem HSNo_p1_0HSNo_p1_0 : HSNo_proj1 0 = 0 (proof)
Theorem HSNo_p0_1HSNo_p0_1 : HSNo_proj0 1 = 1 (proof)
Theorem HSNo_p1_1HSNo_p1_1 : HSNo_proj1 1 = 0 (proof)
Theorem HSNo_p0_iHSNo_p0_i : HSNo_proj0 Complex_i = Complex_i (proof)
Theorem HSNo_p1_iHSNo_p1_i : HSNo_proj1 Complex_i = 0 (proof)
Theorem HSNo_p0_jHSNo_p0_j : HSNo_proj0 Quaternion_j = 0 (proof)
Theorem HSNo_p1_jHSNo_p1_j : HSNo_proj1 Quaternion_j = 1 (proof)
Theorem HSNo_p0_kHSNo_p0_k : HSNo_proj0 Quaternion_k = 0 (proof)
Theorem HSNo_p1_kHSNo_p1_k : HSNo_proj1 Quaternion_k = Complex_i (proof)
Known CD_minus_F_eqCD_minus_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . x1 0x2 0 = 0∀ x3 . x1 x3CD_minus x0 x1 x2 x3 = x2 x3
Known minus_CSNo_0minus_CSNo_0 : minus_CSNo 0 = 0
Theorem minus_HSNo_minus_CSNominus_HSNo_minus_CSNo : ∀ x0 . CSNo x0minus_HSNo x0 = minus_CSNo x0 (proof)
Theorem minus_HSNo_0minus_HSNo_0 : minus_HSNo 0 = 0 (proof)
Known CD_conj_F_eqCD_conj_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . x1 0x2 0 = 0∀ x3 : ι → ι . ∀ x4 . x1 x4CD_conj x0 x1 x2 x3 x4 = x3 x4
Theorem conj_HSNo_conj_CSNoconj_HSNo_conj_CSNo : ∀ x0 . CSNo x0conj_HSNo x0 = conj_CSNo x0 (proof)
Param SNoSNo : ιο
Known SNo_CSNoSNo_CSNo : ∀ x0 . SNo x0CSNo x0
Known conj_CSNo_id_SNoconj_CSNo_id_SNo : ∀ x0 . SNo x0conj_CSNo x0 = x0
Theorem conj_HSNo_id_SNoconj_HSNo_id_SNo : ∀ x0 . SNo x0conj_HSNo x0 = x0 (proof)
Known conj_CSNo_0conj_CSNo_0 : conj_CSNo 0 = 0
Theorem conj_HSNo_0conj_HSNo_0 : conj_HSNo 0 = 0 (proof)
Known conj_CSNo_1conj_CSNo_1 : conj_CSNo 1 = 1
Theorem conj_HSNo_1conj_HSNo_1 : conj_HSNo 1 = 1 (proof)
Known CD_add_F_eqCD_add_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0x2 0 0 = 0∀ x3 x4 . x1 x3x1 x4CD_add x0 x1 x2 x3 x4 = x2 x3 x4
Known add_CSNo_0Ladd_CSNo_0L : ∀ x0 . CSNo x0add_CSNo 0 x0 = x0
Theorem add_HSNo_add_CSNoadd_HSNo_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1add_HSNo x0 x1 = add_CSNo x0 x1 (proof)
Known CD_mul_F_eqCD_mul_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))x2 0 = 0(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 x7 . x1 x6x1 x7CD_mul x0 x1 x2 x3 x4 x5 x6 x7 = x5 x6 x7
Known add_CSNo_0Radd_CSNo_0R : ∀ x0 . CSNo x0add_CSNo x0 0 = x0
Known mul_CSNo_0Lmul_CSNo_0L : ∀ x0 . CSNo x0mul_CSNo 0 x0 = 0
Known mul_CSNo_0Rmul_CSNo_0R : ∀ x0 . CSNo x0mul_CSNo x0 0 = 0
Theorem mul_HSNo_mul_CSNomul_HSNo_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1mul_HSNo x0 x1 = mul_CSNo x0 x1 (proof)
Known CD_minus_involCD_minus_invol : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))(∀ x3 . x1 x3x2 (x2 x3) = x3)∀ x3 . CD_carr x0 x1 x3CD_minus x0 x1 x2 (CD_minus x0 x1 x2 x3) = x3
Known minus_CSNo_involminus_CSNo_invol : ∀ x0 . CSNo x0minus_CSNo (minus_CSNo x0) = x0
Theorem minus_HSNo_involminus_HSNo_invol : ∀ x0 . HSNo x0minus_HSNo (minus_HSNo x0) = x0 (proof)
Known CD_conj_involCD_conj_invol : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x1 (x3 x4))(∀ x4 . x1 x4x2 (x2 x4) = x4)(∀ x4 . x1 x4x3 (x3 x4) = x4)∀ x4 . CD_carr x0 x1 x4CD_conj x0 x1 x2 x3 (CD_conj x0 x1 x2 x3 x4) = x4
Known conj_CSNo_involconj_CSNo_invol : ∀ x0 . CSNo x0conj_CSNo (conj_CSNo x0) = x0
Theorem conj_HSNo_involconj_HSNo_invol : ∀ x0 . HSNo x0conj_HSNo (conj_HSNo x0) = x0 (proof)
Known CD_conj_minusCD_conj_minus : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x1 (x3 x4))(∀ x4 . x1 x4x3 (x2 x4) = x2 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_conj x0 x1 x2 x3 (CD_minus x0 x1 x2 x4) = CD_minus x0 x1 x2 (CD_conj x0 x1 x2 x3 x4)
Known conj_minus_CSNoconj_minus_CSNo : ∀ x0 . CSNo x0conj_CSNo (minus_CSNo x0) = minus_CSNo (conj_CSNo x0)
Theorem conj_minus_HSNoconj_minus_HSNo : ∀ x0 . HSNo x0conj_HSNo (minus_HSNo x0) = minus_HSNo (conj_HSNo x0) (proof)
Known CD_minus_addCD_minus_add : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 x5 . x1 x4x1 x5x1 (x3 x4 x5))(∀ x4 x5 . x1 x4x1 x5x2 (x3 x4 x5) = x3 (x2 x4) (x2 x5))∀ x4 x5 . CD_carr x0 x1 x4CD_carr x0 x1 x5CD_minus x0 x1 x2 (CD_add x0 x1 x3 x4 x5) = CD_add x0 x1 x3 (CD_minus x0 x1 x2 x4) (CD_minus x0 x1 x2 x5)
Known minus_add_CSNominus_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1minus_CSNo (add_CSNo x0 x1) = add_CSNo (minus_CSNo x0) (minus_CSNo x1)
Theorem minus_add_HSNominus_add_HSNo : ∀ x0 x1 . HSNo x0HSNo x1minus_HSNo (add_HSNo x0 x1) = add_HSNo (minus_HSNo x0) (minus_HSNo x1) (proof)
Known CD_conj_addCD_conj_add : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 : ι → ι → ι . (∀ x5 . x1 x5x1 (x2 x5))(∀ x5 . x1 x5x1 (x3 x5))(∀ x5 x6 . x1 x5x1 x6x1 (x4 x5 x6))(∀ x5 x6 . x1 x5x1 x6x2 (x4 x5 x6) = x4 (x2 x5) (x2 x6))(∀ x5 x6 . x1 x5x1 x6x3 (x4 x5 x6) = x4 (x3 x5) (x3 x6))∀ x5 x6 . CD_carr x0 x1 x5CD_carr x0 x1 x6CD_conj x0 x1 x2 x3 (CD_add x0 x1 x4 x5 x6) = CD_add x0 x1 x4 (CD_conj x0 x1 x2 x3 x5) (CD_conj x0 x1 x2 x3 x6)
Known conj_add_CSNoconj_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1conj_CSNo (add_CSNo x0 x1) = add_CSNo (conj_CSNo x0) (conj_CSNo x1)
Theorem conj_add_HSNoconj_add_HSNo : ∀ x0 x1 . HSNo x0HSNo x1conj_HSNo (add_HSNo x0 x1) = add_HSNo (conj_HSNo x0) (conj_HSNo x1) (proof)
Known CD_add_comCD_add_com : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x2 x3 x4 = x2 x4 x3)∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_add x0 x1 x2 x3 x4 = CD_add x0 x1 x2 x4 x3
Known add_CSNo_comadd_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1add_CSNo x0 x1 = add_CSNo x1 x0
Theorem add_HSNo_comadd_HSNo_com : ∀ x0 x1 . HSNo x0HSNo x1add_HSNo x0 x1 = add_HSNo x1 x0 (proof)
Known CD_add_assocCD_add_assoc : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))(∀ x3 x4 x5 . x1 x3x1 x4x1 x5x2 (x2 x3 x4) x5 = x2 x3 (x2 x4 x5))∀ x3 x4 x5 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_carr x0 x1 x5CD_add x0 x1 x2 (CD_add x0 x1 x2 x3 x4) x5 = CD_add x0 x1 x2 x3 (CD_add x0 x1 x2 x4 x5)
Known add_CSNo_assocadd_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo (add_CSNo x0 x1) x2 = add_CSNo x0 (add_CSNo x1 x2)
Theorem add_HSNo_assocadd_HSNo_assoc : ∀ x0 x1 x2 . HSNo x0HSNo x1HSNo x2add_HSNo (add_HSNo x0 x1) x2 = add_HSNo x0 (add_HSNo x1 x2) (proof)
Known CD_add_0LCD_add_0L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0(∀ x3 . x1 x3x2 0 x3 = x3)∀ x3 . CD_carr x0 x1 x3CD_add x0 x1 x2 0 x3 = x3
Theorem add_HSNo_0Ladd_HSNo_0L : ∀ x0 . HSNo x0add_HSNo 0 x0 = x0 (proof)
Known CD_add_0RCD_add_0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0(∀ x3 . x1 x3x2 x3 0 = x3)∀ x3 . CD_carr x0 x1 x3CD_add x0 x1 x2 x3 0 = x3
Theorem add_HSNo_0Radd_HSNo_0R : ∀ x0 . HSNo x0add_HSNo x0 0 = x0 (proof)
Known CD_add_minus_linvCD_add_minus_linv : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x3 (x2 x4) x4 = 0)∀ x4 . CD_carr x0 x1 x4CD_add x0 x1 x3 (CD_minus x0 x1 x2 x4) x4 = 0
Known add_CSNo_minus_CSNo_linvadd_CSNo_minus_CSNo_linv : ∀ x0 . CSNo x0add_CSNo (minus_CSNo x0) x0 = 0
Theorem add_HSNo_minus_HSNo_linvadd_HSNo_minus_HSNo_linv : ∀ x0 . HSNo x0add_HSNo (minus_HSNo x0) x0 = 0 (proof)
Known CD_add_minus_rinvCD_add_minus_rinv : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x3 x4 (x2 x4) = 0)∀ x4 . CD_carr x0 x1 x4CD_add x0 x1 x3 x4 (CD_minus x0 x1 x2 x4) = 0
Known add_CSNo_minus_CSNo_rinvadd_CSNo_minus_CSNo_rinv : ∀ x0 . CSNo x0add_CSNo x0 (minus_CSNo x0) = 0
Theorem add_HSNo_minus_HSNo_rinvadd_HSNo_minus_HSNo_rinv : ∀ x0 . HSNo x0add_HSNo x0 (minus_HSNo x0) = 0 (proof)
Known CD_mul_0RCD_mul_0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x2 0 = 0x3 0 = 0x4 0 0 = 0(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 x6 0 = 0
Theorem mul_HSNo_0Rmul_HSNo_0R : ∀ x0 . HSNo x0mul_HSNo x0 0 = 0 (proof)
Known CD_mul_0LCD_mul_0L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0(∀ x6 . x1 x6x1 (x3 x6))x2 0 = 0x4 0 0 = 0(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 0 x6 = 0
Theorem mul_HSNo_0Lmul_HSNo_0L : ∀ x0 . HSNo x0mul_HSNo 0 x0 = 0 (proof)
Known CD_mul_1RCD_mul_1R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 x6 1 = x6
Known mul_CSNo_1Rmul_CSNo_1R : ∀ x0 . CSNo x0mul_CSNo x0 1 = x0
Theorem mul_HSNo_1Rmul_HSNo_1R : ∀ x0 . HSNo x0mul_HSNo x0 1 = x0 (proof)
Known CD_mul_1LCD_mul_1L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1(∀ x6 . x1 x6x1 (x3 x6))x2 0 = 0(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)(∀ x6 . x1 x6x5 1 x6 = x6)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 1 x6 = x6
Known mul_CSNo_1Lmul_CSNo_1L : ∀ x0 . CSNo x0mul_CSNo 1 x0 = x0
Theorem mul_HSNo_1Lmul_HSNo_1L : ∀ x0 . HSNo x0mul_HSNo 1 x0 = x0 (proof)
Known CD_conj_mulCD_conj_mul : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 . x1 x6x2 (x2 x6) = x6)(∀ x6 . x1 x6x3 (x3 x6) = x6)(∀ x6 . x1 x6x3 (x2 x6) = x2 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 . x1 x6x1 x7x3 (x5 x6 x7) = x5 (x3 x7) (x3 x6))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_conj x0 x1 x2 x3 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = CD_mul x0 x1 x2 x3 x4 x5 (CD_conj x0 x1 x2 x3 x7) (CD_conj x0 x1 x2 x3 x6)
Known conj_mul_CSNoconj_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1conj_CSNo (mul_CSNo x0 x1) = mul_CSNo (conj_CSNo x1) (conj_CSNo x0)
Known minus_mul_CSNo_distrRminus_mul_CSNo_distrR : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 (minus_CSNo x1) = minus_CSNo (mul_CSNo x0 x1)
Known minus_mul_CSNo_distrLminus_mul_CSNo_distrL : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo (minus_CSNo x0) x1 = minus_CSNo (mul_CSNo x0 x1)
Theorem conj_mul_HSNoconj_mul_HSNo : ∀ x0 x1 . HSNo x0HSNo x1conj_HSNo (mul_HSNo x0 x1) = mul_HSNo (conj_HSNo x1) (conj_HSNo x0) (proof)
Known CD_add_mul_distrLCD_add_mul_distrL : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8))∀ x6 x7 x8 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 x8CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_add x0 x1 x4 x7 x8) = CD_add x0 x1 x4 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) (CD_mul x0 x1 x2 x3 x4 x5 x6 x8)
Known mul_CSNo_distrLmul_CSNo_distrL : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (add_CSNo x1 x2) = add_CSNo (mul_CSNo x0 x1) (mul_CSNo x0 x2)
Known mul_CSNo_distrRmul_CSNo_distrR : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo (add_CSNo x0 x1) x2 = add_CSNo (mul_CSNo x0 x2) (mul_CSNo x1 x2)
Theorem mul_HSNo_distrLmul_HSNo_distrL : ∀ x0 x1 x2 . HSNo x0HSNo x1HSNo x2mul_HSNo x0 (add_HSNo x1 x2) = add_HSNo (mul_HSNo x0 x1) (mul_HSNo x0 x2) (proof)
Known CD_add_mul_distrRCD_add_mul_distrR : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8))∀ x6 x7 x8 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 x8CD_mul x0 x1 x2 x3 x4 x5 (CD_add x0 x1 x4 x6 x7) x8 = CD_add x0 x1 x4 (CD_mul x0 x1 x2 x3 x4 x5 x6 x8) (CD_mul x0 x1 x2 x3 x4 x5 x7 x8)
Theorem mul_HSNo_distrRmul_HSNo_distrR : ∀ x0 x1 x2 . HSNo x0HSNo x1HSNo x2mul_HSNo (add_HSNo x0 x1) x2 = add_HSNo (mul_HSNo x0 x2) (mul_HSNo x1 x2) (proof)
Known CD_minus_mul_distrRCD_minus_mul_distrR : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 . x1 x6x3 (x2 x6) = x2 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_minus x0 x1 x2 x7) = CD_minus x0 x1 x2 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Theorem minus_mul_HSNo_distrRminus_mul_HSNo_distrR : ∀ x0 x1 . HSNo x0HSNo x1mul_HSNo x0 (minus_HSNo x1) = minus_HSNo (mul_HSNo x0 x1) (proof)
Known CD_minus_mul_distrLCD_minus_mul_distrL : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_mul x0 x1 x2 x3 x4 x5 (CD_minus x0 x1 x2 x6) x7 = CD_minus x0 x1 x2 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Theorem minus_mul_HSNo_distrLminus_mul_HSNo_distrL : ∀ x0 x1 . HSNo x0HSNo x1mul_HSNo (minus_HSNo x0) x1 = minus_HSNo (mul_HSNo x0 x1) (proof)
Known CD_exp_nat_0CD_exp_nat_0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . ∀ x6 . CD_exp_nat x0 x1 x2 x3 x4 x5 x6 0 = 1
Theorem exp_HSNo_nat_0exp_HSNo_nat_0 : ∀ x0 . exp_HSNo_nat x0 0 = 1 (proof)
Known CD_exp_nat_SCD_exp_nat_S : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 . nat_p x7CD_exp_nat x0 x1 x2 x3 x4 x5 x6 (ordsucc x7) = CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_exp_nat x0 x1 x2 x3 x4 x5 x6 x7)
Theorem exp_HSNo_nat_Sexp_HSNo_nat_S : ∀ x0 x1 . nat_p x1exp_HSNo_nat x0 (ordsucc x1) = mul_HSNo x0 (exp_HSNo_nat x0 x1) (proof)
Known CD_exp_nat_1CD_exp_nat_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_exp_nat x0 x1 x2 x3 x4 x5 x6 1 = x6
Theorem exp_HSNo_nat_1exp_HSNo_nat_1 : ∀ x0 . HSNo x0exp_HSNo_nat x0 1 = x0 (proof)
Known CD_exp_nat_2CD_exp_nat_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_exp_nat x0 x1 x2 x3 x4 x5 x6 2 = CD_mul x0 x1 x2 x3 x4 x5 x6 x6
Theorem exp_HSNo_nat_2exp_HSNo_nat_2 : ∀ x0 . HSNo x0exp_HSNo_nat x0 2 = mul_HSNo x0 x0 (proof)
Known CD_exp_nat_CDCD_exp_nat_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))x1 0x1 1∀ x6 . CD_carr x0 x1 x6∀ x7 . nat_p x7CD_carr x0 x1 (CD_exp_nat x0 x1 x2 x3 x4 x5 x6 x7)
Theorem HSNo_exp_HSNo_natHSNo_exp_HSNo_nat : ∀ x0 . HSNo x0∀ x1 . nat_p x1HSNo (exp_HSNo_nat x0 x1) (proof)
Theorem add_CSNo_com_3b_1_2add_CSNo_com_3b_1_2 : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo (add_CSNo x0 x1) x2 = add_CSNo (add_CSNo x0 x2) x1 (proof)
Theorem add_CSNo_com_4_inner_midadd_CSNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3add_CSNo (add_CSNo x0 x1) (add_CSNo x2 x3) = add_CSNo (add_CSNo x0 x2) (add_CSNo x1 x3) (proof)
Theorem add_CSNo_rotate_4_0312add_CSNo_rotate_4_0312 : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3add_CSNo (add_CSNo x0 x1) (add_CSNo x2 x3) = add_CSNo (add_CSNo x0 x3) (add_CSNo x1 x2) (proof)
Known Complex_i_sqrComplex_i_sqr : mul_CSNo Complex_i Complex_i = minus_CSNo 1
Theorem Quaternion_i_sqrQuaternion_i_sqr : mul_HSNo Complex_i Complex_i = minus_HSNo 1 (proof)
Theorem Quaternion_j_sqrQuaternion_j_sqr : mul_HSNo Quaternion_j Quaternion_j = minus_HSNo 1 (proof)
Known conj_CSNo_iconj_CSNo_i : conj_CSNo Complex_i = minus_CSNo Complex_i
Theorem Quaternion_k_sqrQuaternion_k_sqr : mul_HSNo Quaternion_k Quaternion_k = minus_HSNo 1 (proof)
Theorem Quaternion_i_jQuaternion_i_j : mul_HSNo Complex_i Quaternion_j = Quaternion_k (proof)
Known SNo_0SNo_0 : SNo 0
Theorem Quaternion_j_kQuaternion_j_k : mul_HSNo Quaternion_j Quaternion_k = Complex_i (proof)
Theorem Quaternion_k_iQuaternion_k_i : mul_HSNo Quaternion_k Complex_i = Quaternion_j (proof)
Theorem Quaternion_j_iQuaternion_j_i : mul_HSNo Quaternion_j Complex_i = minus_HSNo Quaternion_k (proof)
Known SNo_1SNo_1 : SNo 1
Theorem Quaternion_k_jQuaternion_k_j : mul_HSNo Quaternion_k Quaternion_j = minus_HSNo Complex_i (proof)
Theorem Quaternion_i_kQuaternion_i_k : mul_HSNo Complex_i Quaternion_k = minus_HSNo Quaternion_j (proof)
Theorem add_CSNo_rotate_3_1add_CSNo_rotate_3_1 : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo x0 (add_CSNo x1 x2) = add_CSNo x2 (add_CSNo x0 x1) (proof)
Known mul_CSNo_commul_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 x1 = mul_CSNo x1 x0
Known mul_CSNo_assocmul_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo (mul_CSNo x0 x1) x2
Theorem mul_CSNo_rotate_3_1mul_CSNo_rotate_3_1 : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo x2 (mul_CSNo x0 x1) (proof)
Theorem conj_HSNo_iconj_HSNo_i : conj_HSNo Complex_i = minus_HSNo Complex_i (proof)
Theorem conj_HSNo_jconj_HSNo_j : conj_HSNo Quaternion_j = minus_HSNo Quaternion_j (proof)
Theorem conj_HSNo_kconj_HSNo_k : conj_HSNo Quaternion_k = minus_HSNo Quaternion_k (proof)