Search for blocks/addresses/...
Proofgold Asset
asset id
5f2a5322b97ecc86717d713555eca9ec776a49d3b12d8991397b40801a779454
asset hash
fad8f8a0e6b92f01579c59de3ff663785ed1ee0acb540508d32bd189e56bcd94
bday / block
4969
tx
4f316..
preasset
doc published by
Pr6Pc..
Param
explicit_Reals
explicit_Reals
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
ReplSep2
ReplSep2
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
True
True
:
ο
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
explicit_Field_minus
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
89287..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
∀ x7 : ο .
(
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x6
x8
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x8
=
x6
x10
x11
⟶
x9
(
x6
x10
x11
)
)
⟶
x9
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
=
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
=
x9
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
x8
=
x6
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x6
x8
x1
∈
{x9 ∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
|
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x1
=
x9
}
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
=
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
=
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
⟶
x8
=
x9
)
⟶
x6
x1
x1
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
x6
x2
x1
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
=
x6
(
x3
x8
x10
)
(
x3
x9
x11
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x6
(
x3
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
x3
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
=
x6
(
x3
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
x3
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x6
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x6
(
x3
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
)
(
x3
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
x15
)
)
)
)
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
=
x3
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x6
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
(
x3
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
)
(
x3
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∀ x20 : ο .
(
∀ x21 .
and
(
x21
∈
x0
)
(
x8
=
x6
x19
x21
)
⟶
x20
)
⟶
x20
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∀ x20 : ο .
(
∀ x21 .
and
(
x21
∈
x0
)
(
x9
=
x6
x19
x21
)
⟶
x20
)
⟶
x20
)
)
)
x17
)
)
)
)
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
=
x3
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
)
=
x6
(
x3
(
x4
x8
x10
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x9
x11
)
)
)
(
x3
(
x4
x8
x11
)
(
x4
x9
x10
)
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
)
=
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
x15
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
x15
)
)
)
)
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
)
)
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
=
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∀ x20 : ο .
(
∀ x21 .
and
(
x21
∈
x0
)
(
x8
=
x6
x19
x21
)
⟶
x20
)
⟶
x20
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∀ x20 : ο .
(
∀ x21 .
and
(
x21
∈
x0
)
(
x9
=
x6
x19
x21
)
⟶
x20
)
⟶
x20
)
)
)
x17
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∀ x20 : ο .
(
∀ x21 .
and
(
x21
∈
x0
)
(
x9
=
x6
x19
x21
)
⟶
x20
)
⟶
x20
)
)
)
x17
)
)
)
)
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∀ x20 : ο .
(
∀ x21 .
and
(
x21
∈
x0
)
(
x8
=
x6
x19
x21
)
⟶
x20
)
⟶
x20
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x17
x19
)
⟶
x18
)
⟶
x18
)
)
)
)
)
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
=
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
)
⟶
x7
)
⟶
x7
Theorem
455b2..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
∀ x7 : ο .
(
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x6
x8
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x6
x8
x9
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
=
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x6
x8
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
=
x9
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x9 .
∀ x10 : ο .
(
x9
∈
x0
⟶
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x9
x12
)
⟶
x11
)
⟶
x11
)
⟶
x10
)
⟶
x10
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x9 .
∀ x10 : ο .
(
x9
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x12 .
∀ x13 : ο .
(
x12
∈
x0
⟶
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x12
x15
)
⟶
x14
)
⟶
x14
)
⟶
x13
)
⟶
x13
)
)
x9
⟶
x10
)
⟶
x10
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
=
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
=
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
⟶
x8
=
x9
)
⟶
x6
x1
x1
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
x6
x2
x1
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x6
(
x3
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x10
x13
)
⟶
x12
)
⟶
x12
)
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x10
x13
)
⟶
x12
)
⟶
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
x3
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
x13
∈
x0
⟶
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x13
x16
)
⟶
x15
)
⟶
x15
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
x13
∈
x0
⟶
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x13
x16
)
⟶
x15
)
⟶
x15
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
)
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x6
(
x3
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x16
x19
)
⟶
x18
)
⟶
x18
)
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x16
x19
)
⟶
x18
)
⟶
x18
)
⟶
x17
)
⟶
x17
)
)
)
(
x3
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x8
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x9
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
)
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
=
x3
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x6
(
x3
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
)
(
x3
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
x17
∈
x0
⟶
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x17
x20
)
⟶
x19
)
⟶
x19
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
x17
∈
x0
⟶
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x9
=
x6
x17
x20
)
⟶
x19
)
⟶
x19
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
)
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
(
x3
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x8
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x9
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
)
(
x3
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
x22
∈
x0
⟶
(
∀ x24 : ο .
(
∀ x25 .
and
(
x25
∈
x0
)
(
x8
=
x6
x22
x25
)
⟶
x24
)
⟶
x24
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
x22
∈
x0
⟶
(
∀ x24 : ο .
(
∀ x25 .
and
(
x25
∈
x0
)
(
x9
=
x6
x22
x25
)
⟶
x24
)
⟶
x24
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
)
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
=
x3
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x6
(
x3
(
x4
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x10
x13
)
⟶
x12
)
⟶
x12
)
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x10
x13
)
⟶
x12
)
⟶
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
x13
∈
x0
⟶
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x13
x16
)
⟶
x15
)
⟶
x15
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
x13
∈
x0
⟶
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x13
x16
)
⟶
x15
)
⟶
x15
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x10
x13
)
⟶
x12
)
⟶
x12
)
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
x13
∈
x0
⟶
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x13
x16
)
⟶
x15
)
⟶
x15
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
)
(
x4
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
x13
∈
x0
⟶
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x13
x16
)
⟶
x15
)
⟶
x15
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
x10
∈
x0
⟶
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x10
x13
)
⟶
x12
)
⟶
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x16
x19
)
⟶
x18
)
⟶
x18
)
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x16
x19
)
⟶
x18
)
⟶
x18
)
⟶
x17
)
⟶
x17
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x8
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x9
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x16
x19
)
⟶
x18
)
⟶
x18
)
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x9
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
)
(
x4
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x8
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
x16
∈
x0
⟶
(
∀ x18 : ο .
(
∀ x19 .
and
(
x19
∈
x0
)
(
x9
=
x6
x16
x19
)
⟶
x18
)
⟶
x18
)
⟶
x17
)
⟶
x17
)
)
)
)
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
=
x3
(
x4
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
)
)
)
⟶
(
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
x17
∈
x0
⟶
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x17
x20
)
⟶
x19
)
⟶
x19
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
x17
∈
x0
⟶
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x9
=
x6
x17
x20
)
⟶
x19
)
⟶
x19
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
x17
∈
x0
⟶
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x9
=
x6
x17
x20
)
⟶
x19
)
⟶
x19
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
)
(
x4
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
x17
∈
x0
⟶
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x17
x20
)
⟶
x19
)
⟶
x19
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
)
)
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x8
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x9
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
x22
∈
x0
⟶
(
∀ x24 : ο .
(
∀ x25 .
and
(
x25
∈
x0
)
(
x8
=
x6
x22
x25
)
⟶
x24
)
⟶
x24
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
x22
∈
x0
⟶
(
∀ x24 : ο .
(
∀ x25 .
and
(
x25
∈
x0
)
(
x9
=
x6
x22
x25
)
⟶
x24
)
⟶
x24
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x8
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
x22
∈
x0
⟶
(
∀ x24 : ο .
(
∀ x25 .
and
(
x25
∈
x0
)
(
x9
=
x6
x22
x25
)
⟶
x24
)
⟶
x24
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
)
(
x4
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
x22
∈
x0
⟶
(
∀ x24 : ο .
(
∀ x25 .
and
(
x25
∈
x0
)
(
x8
=
x6
x22
x25
)
⟶
x24
)
⟶
x24
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
x19
∈
x0
⟶
(
∀ x21 : ο .
(
∀ x22 .
and
(
x22
∈
x0
)
(
x9
=
x6
x19
x22
)
⟶
x21
)
⟶
x21
)
⟶
x20
)
⟶
x20
)
)
)
)
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
=
x3
(
x4
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
)
(
x4
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
x8
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
x14
∈
x0
⟶
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x14
x17
)
⟶
x16
)
⟶
x16
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
x11
∈
x0
⟶
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x11
x14
)
⟶
x13
)
⟶
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
⟶
x7
)
⟶
x7
(proof)
Param
explicit_Field
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
explicit_Complex
explicit_Complex
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
Subq
Subq
:
ι
→
ι
→
ο
Known
10d6b..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
explicit_Field
(
ReplSep2
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
)
)
⟶
and
(
explicit_Complex
(
ReplSep2
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
λ x7 .
x6
(
prim0
(
λ x8 .
and
(
x8
∈
x0
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
x8
x10
)
⟶
x9
)
⟶
x9
)
)
)
x1
)
(
λ x7 .
x6
(
prim0
(
λ x8 .
and
(
x8
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
x8
)
)
)
x1
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
x6
x1
x2
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
)
)
)
(
(
∀ x7 .
x7
∈
x0
⟶
x6
x7
x1
=
x7
)
⟶
and
(
and
(
and
(
and
(
and
(
x0
⊆
ReplSep2
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
∀ x7 .
x7
∈
x0
⟶
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
=
x7
)
)
(
x6
x1
x1
=
x1
)
)
(
x6
x2
x1
=
x2
)
)
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x6
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
=
x3
x7
x8
)
)
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
=
x4
x7
x8
)
)
Theorem
6b23b..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
explicit_Field
(
ReplSep2
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
)
)
⟶
∀ x7 : ο .
(
explicit_Complex
(
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
(
λ x8 .
x6
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
x1
)
(
λ x8 .
x6
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
x1
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
x6
x1
x2
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
)
⟶
(
(
∀ x8 .
x8
∈
x0
⟶
x6
x8
x1
=
x8
)
⟶
∀ x8 : ο .
(
(
∀ x9 : ο .
(
(
∀ x10 : ο .
(
(
∀ x11 : ο .
(
(
∀ x12 : ο .
(
x0
⊆
ReplSep2
x0
(
λ x13 .
x0
)
(
λ x13 x14 .
True
)
x6
⟶
(
∀ x13 .
x13
∈
x0
⟶
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x13
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
=
x13
)
⟶
x12
)
⟶
x12
)
⟶
x6
x1
x1
=
x1
⟶
x11
)
⟶
x11
)
⟶
x6
x2
x1
=
x2
⟶
x10
)
⟶
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x10
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x10
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x10
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
=
x3
x10
x11
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x10
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x10
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x10
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x10
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x10
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
)
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x10
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
)
)
=
x4
x9
x10
)
⟶
x8
)
⟶
x8
)
⟶
x7
)
⟶
x7
(proof)