Search for blocks/addresses/...

Proofgold Asset

asset id
7915ed3017fc0b8a56bf3ce634804c0f410bc6f44d6688a7ba918e42b128bfee
asset hash
468ccb7b33f56e7078a6adc65ee985fd227cea5834594cd75405fe73086ffbc1
bday / block
36385
tx
7eb09..
preasset
doc published by PrCmT..
Known df_oposet__df_cmtN__df_ol__df_oml__df_covers__df_ats__df_atl__df_cvlat__df_hlat__df_llines__df_lplanes__df_lvols__df_lines__df_pointsN__df_psubsp__df_pmap__df_padd__df_pclN : ∀ x0 : ο . (wceq cops (crab (λ x1 . wa (wa (wcel (cfv (cv x1) cbs) (cdm (cfv (cv x1) club))) (wcel (cfv (cv x1) cbs) (cdm (cfv (cv x1) cglb)))) (wex (λ x2 . wa (wceq (cv x2) (cfv (cv x1) coc)) (wral (λ x3 . wral (λ x4 . w3a (w3a (wcel (cfv (cv x3) (cv x2)) (cfv (cv x1) cbs)) (wceq (cfv (cfv (cv x3) (cv x2)) (cv x2)) (cv x3)) (wbr (cv x3) (cv x4) (cfv (cv x1) cple)wbr (cfv (cv x4) (cv x2)) (cfv (cv x3) (cv x2)) (cfv (cv x1) cple))) (wceq (co (cv x3) (cfv (cv x3) (cv x2)) (cfv (cv x1) cjn)) (cfv (cv x1) cp1)) (wceq (co (cv x3) (cfv (cv x3) (cv x2)) (cfv (cv x1) cmee)) (cfv (cv x1) cp0))) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cv x1) cbs))))) (λ x1 . cpo))wceq ccmtN (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . w3a (wcel (cv x2) (cfv (cv x1) cbs)) (wcel (cv x3) (cfv (cv x1) cbs)) (wceq (cv x2) (co (co (cv x2) (cv x3) (cfv (cv x1) cmee)) (co (cv x2) (cfv (cv x3) (cfv (cv x1) coc)) (cfv (cv x1) cmee)) (cfv (cv x1) cjn))))))wceq col (cin clat cops)wceq coml (crab (λ x1 . wral (λ x2 . wral (λ x3 . wbr (cv x2) (cv x3) (cfv (cv x1) cple)wceq (cv x3) (co (cv x2) (co (cv x3) (cfv (cv x2) (cfv (cv x1) coc)) (cfv (cv x1) cmee)) (cfv (cv x1) cjn))) (λ x3 . cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs)) (λ x1 . col))wceq ccvr (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . w3a (wa (wcel (cv x2) (cfv (cv x1) cbs)) (wcel (cv x3) (cfv (cv x1) cbs))) (wbr (cv x2) (cv x3) (cfv (cv x1) cplt)) (wn (wrex (λ x4 . wa (wbr (cv x2) (cv x4) (cfv (cv x1) cplt)) (wbr (cv x4) (cv x3) (cfv (cv x1) cplt))) (λ x4 . cfv (cv x1) cbs))))))wceq catm (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wbr (cfv (cv x1) cp0) (cv x2) (cfv (cv x1) ccvr)) (λ x2 . cfv (cv x1) cbs)))wceq cal (crab (λ x1 . wa (wcel (cfv (cv x1) cbs) (cdm (cfv (cv x1) cglb))) (wral (λ x2 . wne (cv x2) (cfv (cv x1) cp0)wrex (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x1) cple)) (λ x3 . cfv (cv x1) catm)) (λ x2 . cfv (cv x1) cbs))) (λ x1 . clat))wceq clc (crab (λ x1 . wral (λ x2 . wral (λ x3 . wral (λ x4 . wa (wn (wbr (cv x2) (cv x4) (cfv (cv x1) cple))) (wbr (cv x2) (co (cv x4) (cv x3) (cfv (cv x1) cjn)) (cfv (cv x1) cple))wbr (cv x3) (co (cv x4) (cv x2) (cfv (cv x1) cjn)) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cv x1) catm)) (λ x2 . cfv (cv x1) catm)) (λ x1 . cal))wceq chlt (crab (λ x1 . wa (wral (λ x2 . wral (λ x3 . wne (cv x2) (cv x3)wrex (λ x4 . w3a (wne (cv x4) (cv x2)) (wne (cv x4) (cv x3)) (wbr (cv x4) (co (cv x2) (cv x3) (cfv (cv x1) cjn)) (cfv (cv x1) cple))) (λ x4 . cfv (cv x1) catm)) (λ x3 . cfv (cv x1) catm)) (λ x2 . cfv (cv x1) catm)) (wrex (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wa (wbr (cfv (cv x1) cp0) (cv x2) (cfv (cv x1) cplt)) (wbr (cv x2) (cv x3) (cfv (cv x1) cplt))) (wa (wbr (cv x3) (cv x4) (cfv (cv x1) cplt)) (wbr (cv x4) (cfv (cv x1) cp1) (cfv (cv x1) cplt)))) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs))) (λ x1 . cin (cin coml ccla) clc))wceq clln (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wrex (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x1) ccvr)) (λ x3 . cfv (cv x1) catm)) (λ x2 . cfv (cv x1) cbs)))wceq clpl (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wrex (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x1) ccvr)) (λ x3 . cfv (cv x1) clln)) (λ x2 . cfv (cv x1) cbs)))wceq clvol (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wrex (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x1) ccvr)) (λ x3 . cfv (cv x1) clpl)) (λ x2 . cfv (cv x1) cbs)))wceq clines (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wne (cv x3) (cv x4)) (wceq (cv x2) (crab (λ x5 . wbr (cv x5) (co (cv x3) (cv x4) (cfv (cv x1) cjn)) (cfv (cv x1) cple)) (λ x5 . cfv (cv x1) catm)))) (λ x4 . cfv (cv x1) catm)) (λ x3 . cfv (cv x1) catm))))wceq cpointsN (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wrex (λ x3 . wceq (cv x2) (csn (cv x3))) (λ x3 . cfv (cv x1) catm))))wceq cpsubsp (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wa (wss (cv x2) (cfv (cv x1) catm)) (wral (λ x3 . wral (λ x4 . wral (λ x5 . wbr (cv x5) (co (cv x3) (cv x4) (cfv (cv x1) cjn)) (cfv (cv x1) cple)wcel (cv x5) (cv x2)) (λ x5 . cfv (cv x1) catm)) (λ x4 . cv x2)) (λ x3 . cv x2)))))wceq cpmap (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cbs) (λ x2 . crab (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x1) cple)) (λ x3 . cfv (cv x1) catm))))wceq cpadd (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cpw (cfv (cv x1) catm)) (λ x2 x3 . cpw (cfv (cv x1) catm)) (λ x2 x3 . cun (cun (cv x2) (cv x3)) (crab (λ x4 . wrex (λ x5 . wrex (λ x6 . wbr (cv x4) (co (cv x5) (cv x6) (cfv (cv x1) cjn)) (cfv (cv x1) cple)) (λ x6 . cv x3)) (λ x5 . cv x2)) (λ x4 . cfv (cv x1) catm)))))wceq cpclN (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cfv (cv x1) catm)) (λ x2 . cint (crab (λ x3 . wss (cv x2) (cv x3)) (λ x3 . cfv (cv x1) cpsubsp)))))x0)x0
Theorem df_oposet : wceq cops (crab (λ x0 . wa (wa (wcel (cfv (cv x0) cbs) (cdm (cfv (cv x0) club))) (wcel (cfv (cv x0) cbs) (cdm (cfv (cv x0) cglb)))) (wex (λ x1 . wa (wceq (cv x1) (cfv (cv x0) coc)) (wral (λ x2 . wral (λ x3 . w3a (w3a (wcel (cfv (cv x2) (cv x1)) (cfv (cv x0) cbs)) (wceq (cfv (cfv (cv x2) (cv x1)) (cv x1)) (cv x2)) (wbr (cv x2) (cv x3) (cfv (cv x0) cple)wbr (cfv (cv x3) (cv x1)) (cfv (cv x2) (cv x1)) (cfv (cv x0) cple))) (wceq (co (cv x2) (cfv (cv x2) (cv x1)) (cfv (cv x0) cjn)) (cfv (cv x0) cp1)) (wceq (co (cv x2) (cfv (cv x2) (cv x1)) (cfv (cv x0) cmee)) (cfv (cv x0) cp0))) (λ x3 . cfv (cv x0) cbs)) (λ x2 . cfv (cv x0) cbs))))) (λ x0 . cpo)) (proof)
Theorem df_cmtN : wceq ccmtN (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . w3a (wcel (cv x1) (cfv (cv x0) cbs)) (wcel (cv x2) (cfv (cv x0) cbs)) (wceq (cv x1) (co (co (cv x1) (cv x2) (cfv (cv x0) cmee)) (co (cv x1) (cfv (cv x2) (cfv (cv x0) coc)) (cfv (cv x0) cmee)) (cfv (cv x0) cjn)))))) (proof)
Theorem df_ol : wceq col (cin clat cops) (proof)
Theorem df_oml : wceq coml (crab (λ x0 . wral (λ x1 . wral (λ x2 . wbr (cv x1) (cv x2) (cfv (cv x0) cple)wceq (cv x2) (co (cv x1) (co (cv x2) (cfv (cv x1) (cfv (cv x0) coc)) (cfv (cv x0) cmee)) (cfv (cv x0) cjn))) (λ x2 . cfv (cv x0) cbs)) (λ x1 . cfv (cv x0) cbs)) (λ x0 . col)) (proof)
Theorem df_covers : wceq ccvr (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . w3a (wa (wcel (cv x1) (cfv (cv x0) cbs)) (wcel (cv x2) (cfv (cv x0) cbs))) (wbr (cv x1) (cv x2) (cfv (cv x0) cplt)) (wn (wrex (λ x3 . wa (wbr (cv x1) (cv x3) (cfv (cv x0) cplt)) (wbr (cv x3) (cv x2) (cfv (cv x0) cplt))) (λ x3 . cfv (cv x0) cbs)))))) (proof)
Theorem df_ats : wceq catm (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wbr (cfv (cv x0) cp0) (cv x1) (cfv (cv x0) ccvr)) (λ x1 . cfv (cv x0) cbs))) (proof)
Theorem df_atl : wceq cal (crab (λ x0 . wa (wcel (cfv (cv x0) cbs) (cdm (cfv (cv x0) cglb))) (wral (λ x1 . wne (cv x1) (cfv (cv x0) cp0)wrex (λ x2 . wbr (cv x2) (cv x1) (cfv (cv x0) cple)) (λ x2 . cfv (cv x0) catm)) (λ x1 . cfv (cv x0) cbs))) (λ x0 . clat)) (proof)
Theorem df_cvlat : wceq clc (crab (λ x0 . wral (λ x1 . wral (λ x2 . wral (λ x3 . wa (wn (wbr (cv x1) (cv x3) (cfv (cv x0) cple))) (wbr (cv x1) (co (cv x3) (cv x2) (cfv (cv x0) cjn)) (cfv (cv x0) cple))wbr (cv x2) (co (cv x3) (cv x1) (cfv (cv x0) cjn)) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs)) (λ x2 . cfv (cv x0) catm)) (λ x1 . cfv (cv x0) catm)) (λ x0 . cal)) (proof)
Theorem df_hlat : wceq chlt (crab (λ x0 . wa (wral (λ x1 . wral (λ x2 . wne (cv x1) (cv x2)wrex (λ x3 . w3a (wne (cv x3) (cv x1)) (wne (cv x3) (cv x2)) (wbr (cv x3) (co (cv x1) (cv x2) (cfv (cv x0) cjn)) (cfv (cv x0) cple))) (λ x3 . cfv (cv x0) catm)) (λ x2 . cfv (cv x0) catm)) (λ x1 . cfv (cv x0) catm)) (wrex (λ x1 . wrex (λ x2 . wrex (λ x3 . wa (wa (wbr (cfv (cv x0) cp0) (cv x1) (cfv (cv x0) cplt)) (wbr (cv x1) (cv x2) (cfv (cv x0) cplt))) (wa (wbr (cv x2) (cv x3) (cfv (cv x0) cplt)) (wbr (cv x3) (cfv (cv x0) cp1) (cfv (cv x0) cplt)))) (λ x3 . cfv (cv x0) cbs)) (λ x2 . cfv (cv x0) cbs)) (λ x1 . cfv (cv x0) cbs))) (λ x0 . cin (cin coml ccla) clc)) (proof)
Theorem df_llines : wceq clln (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wrex (λ x2 . wbr (cv x2) (cv x1) (cfv (cv x0) ccvr)) (λ x2 . cfv (cv x0) catm)) (λ x1 . cfv (cv x0) cbs))) (proof)
Theorem df_lplanes : wceq clpl (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wrex (λ x2 . wbr (cv x2) (cv x1) (cfv (cv x0) ccvr)) (λ x2 . cfv (cv x0) clln)) (λ x1 . cfv (cv x0) cbs))) (proof)
Theorem df_lvols : wceq clvol (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wrex (λ x2 . wbr (cv x2) (cv x1) (cfv (cv x0) ccvr)) (λ x2 . cfv (cv x0) clpl)) (λ x1 . cfv (cv x0) cbs))) (proof)
Theorem df_lines : wceq clines (cmpt (λ x0 . cvv) (λ x0 . cab (λ x1 . wrex (λ x2 . wrex (λ x3 . wa (wne (cv x2) (cv x3)) (wceq (cv x1) (crab (λ x4 . wbr (cv x4) (co (cv x2) (cv x3) (cfv (cv x0) cjn)) (cfv (cv x0) cple)) (λ x4 . cfv (cv x0) catm)))) (λ x3 . cfv (cv x0) catm)) (λ x2 . cfv (cv x0) catm)))) (proof)
Theorem df_pointsN : wceq cpointsN (cmpt (λ x0 . cvv) (λ x0 . cab (λ x1 . wrex (λ x2 . wceq (cv x1) (csn (cv x2))) (λ x2 . cfv (cv x0) catm)))) (proof)
Theorem df_psubsp : wceq cpsubsp (cmpt (λ x0 . cvv) (λ x0 . cab (λ x1 . wa (wss (cv x1) (cfv (cv x0) catm)) (wral (λ x2 . wral (λ x3 . wral (λ x4 . wbr (cv x4) (co (cv x2) (cv x3) (cfv (cv x0) cjn)) (cfv (cv x0) cple)wcel (cv x4) (cv x1)) (λ x4 . cfv (cv x0) catm)) (λ x3 . cv x1)) (λ x2 . cv x1))))) (proof)
Theorem df_pmap : wceq cpmap (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) cbs) (λ x1 . crab (λ x2 . wbr (cv x2) (cv x1) (cfv (cv x0) cple)) (λ x2 . cfv (cv x0) catm)))) (proof)
Theorem df_padd : wceq cpadd (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cpw (cfv (cv x0) catm)) (λ x1 x2 . cpw (cfv (cv x0) catm)) (λ x1 x2 . cun (cun (cv x1) (cv x2)) (crab (λ x3 . wrex (λ x4 . wrex (λ x5 . wbr (cv x3) (co (cv x4) (cv x5) (cfv (cv x0) cjn)) (cfv (cv x0) cple)) (λ x5 . cv x2)) (λ x4 . cv x1)) (λ x3 . cfv (cv x0) catm))))) (proof)
Theorem df_pclN : wceq cpclN (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cpw (cfv (cv x0) catm)) (λ x1 . cint (crab (λ x2 . wss (cv x1) (cv x2)) (λ x2 . cfv (cv x0) cpsubsp))))) (proof)