Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNrV..
/
2664e..
PUUG4..
/
53620..
vout
PrNrV..
/
75504..
0.10 bars
TMMXv..
/
412da..
ownership of
f4026..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT8M..
/
c7556..
ownership of
9da5a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdJy..
/
57134..
ownership of
013d3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTHk..
/
66b48..
ownership of
35c66..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVvt..
/
466fb..
ownership of
926a4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ5X..
/
fad87..
ownership of
bcda2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbco..
/
fbe7c..
ownership of
ad0f7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcve..
/
1bc61..
ownership of
79dc5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGDd..
/
245c8..
ownership of
befc1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHb1..
/
f8560..
ownership of
c6152..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW1h..
/
4095a..
ownership of
c77bb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTi1..
/
ac36b..
ownership of
79d95..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNpy..
/
320df..
ownership of
f7a93..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFrs..
/
7f0e1..
ownership of
6cae3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMCB..
/
4a9b5..
ownership of
7744c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJzY..
/
f225c..
ownership of
6e14b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaT5..
/
92eca..
ownership of
f85b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGCv..
/
e41b1..
ownership of
d84f7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHBM..
/
ea8db..
ownership of
b7b7e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNpD..
/
12d57..
ownership of
6a022..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWcQ..
/
7573f..
ownership of
5ab4a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVvA..
/
554b1..
ownership of
efe33..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHct..
/
19dfc..
ownership of
b1980..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUQ9..
/
14186..
ownership of
0b050..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXkW..
/
82344..
ownership of
21895..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZE1..
/
ecf5d..
ownership of
6f0af..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWD3..
/
9b656..
ownership of
7e4dc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRcY..
/
ffac4..
ownership of
726f2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaeZ..
/
d1497..
ownership of
f427f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYTC..
/
5bd68..
ownership of
640bb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMCA..
/
db465..
ownership of
fc0df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUUp..
/
c3210..
ownership of
21dba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbyc..
/
0cbbf..
ownership of
80613..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGmv..
/
a598b..
ownership of
696e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRm9..
/
762b0..
ownership of
e7038..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTJ1..
/
b4ab8..
ownership of
994f8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUKLm..
/
7915e..
doc published by
PrCmT..
Known
df_oposet__df_cmtN__df_ol__df_oml__df_covers__df_ats__df_atl__df_cvlat__df_hlat__df_llines__df_lplanes__df_lvols__df_lines__df_pointsN__df_psubsp__df_pmap__df_padd__df_pclN
:
∀ x0 : ο .
(
wceq
cops
(
crab
(
λ x1 .
wa
(
wa
(
wcel
(
cfv
(
cv
x1
)
cbs
)
(
cdm
(
cfv
(
cv
x1
)
club
)
)
)
(
wcel
(
cfv
(
cv
x1
)
cbs
)
(
cdm
(
cfv
(
cv
x1
)
cglb
)
)
)
)
(
wex
(
λ x2 .
wa
(
wceq
(
cv
x2
)
(
cfv
(
cv
x1
)
coc
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
w3a
(
w3a
(
wcel
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wceq
(
cfv
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cv
x2
)
)
(
cv
x3
)
)
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
⟶
wbr
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cple
)
)
)
(
wceq
(
co
(
cv
x3
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cfv
(
cv
x1
)
cp1
)
)
(
wceq
(
co
(
cv
x3
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cmee
)
)
(
cfv
(
cv
x1
)
cp0
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
(
λ x1 .
cpo
)
)
⟶
wceq
ccmtN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
w3a
(
wcel
(
cv
x2
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wcel
(
cv
x3
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wceq
(
cv
x2
)
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cmee
)
)
(
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
coc
)
)
(
cfv
(
cv
x1
)
cmee
)
)
(
cfv
(
cv
x1
)
cjn
)
)
)
)
)
)
⟶
wceq
col
(
cin
clat
cops
)
⟶
wceq
coml
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cple
)
⟶
wceq
(
cv
x3
)
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coc
)
)
(
cfv
(
cv
x1
)
cmee
)
)
(
cfv
(
cv
x1
)
cjn
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
col
)
)
⟶
wceq
ccvr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
w3a
(
wa
(
wcel
(
cv
x2
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wcel
(
cv
x3
)
(
cfv
(
cv
x1
)
cbs
)
)
)
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplt
)
)
(
wn
(
wrex
(
λ x4 .
wa
(
wbr
(
cv
x2
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplt
)
)
(
wbr
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplt
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
)
⟶
wceq
catm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wbr
(
cfv
(
cv
x1
)
cp0
)
(
cv
x2
)
(
cfv
(
cv
x1
)
ccvr
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cal
(
crab
(
λ x1 .
wa
(
wcel
(
cfv
(
cv
x1
)
cbs
)
(
cdm
(
cfv
(
cv
x1
)
cglb
)
)
)
(
wral
(
λ x2 .
wne
(
cv
x2
)
(
cfv
(
cv
x1
)
cp0
)
⟶
wrex
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x3 .
cfv
(
cv
x1
)
catm
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x1 .
clat
)
)
⟶
wceq
clc
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wa
(
wn
(
wbr
(
cv
x2
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
)
)
(
wbr
(
cv
x2
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cfv
(
cv
x1
)
cple
)
)
⟶
wbr
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x1
)
catm
)
)
(
λ x2 .
cfv
(
cv
x1
)
catm
)
)
(
λ x1 .
cal
)
)
⟶
wceq
chlt
(
crab
(
λ x1 .
wa
(
wral
(
λ x2 .
wral
(
λ x3 .
wne
(
cv
x2
)
(
cv
x3
)
⟶
wrex
(
λ x4 .
w3a
(
wne
(
cv
x4
)
(
cv
x2
)
)
(
wne
(
cv
x4
)
(
cv
x3
)
)
(
wbr
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cfv
(
cv
x1
)
cple
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
catm
)
)
(
λ x3 .
cfv
(
cv
x1
)
catm
)
)
(
λ x2 .
cfv
(
cv
x1
)
catm
)
)
(
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wa
(
wa
(
wbr
(
cfv
(
cv
x1
)
cp0
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cplt
)
)
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplt
)
)
)
(
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplt
)
)
(
wbr
(
cv
x4
)
(
cfv
(
cv
x1
)
cp1
)
(
cfv
(
cv
x1
)
cplt
)
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x1 .
cin
(
cin
coml
ccla
)
clc
)
)
⟶
wceq
clln
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
ccvr
)
)
(
λ x3 .
cfv
(
cv
x1
)
catm
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
clpl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
ccvr
)
)
(
λ x3 .
cfv
(
cv
x1
)
clln
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
clvol
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
ccvr
)
)
(
λ x3 .
cfv
(
cv
x1
)
clpl
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
clines
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wa
(
wne
(
cv
x3
)
(
cv
x4
)
)
(
wceq
(
cv
x2
)
(
crab
(
λ x5 .
wbr
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x5 .
cfv
(
cv
x1
)
catm
)
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
catm
)
)
(
λ x3 .
cfv
(
cv
x1
)
catm
)
)
)
)
⟶
wceq
cpointsN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
catm
)
)
)
)
⟶
wceq
cpsubsp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wa
(
wss
(
cv
x2
)
(
cfv
(
cv
x1
)
catm
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cfv
(
cv
x1
)
cple
)
⟶
wcel
(
cv
x5
)
(
cv
x2
)
)
(
λ x5 .
cfv
(
cv
x1
)
catm
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
)
)
⟶
wceq
cpmap
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
crab
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x3 .
cfv
(
cv
x1
)
catm
)
)
)
)
⟶
wceq
cpadd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
catm
)
)
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
catm
)
)
(
λ x2 x3 .
cun
(
cun
(
cv
x2
)
(
cv
x3
)
)
(
crab
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wbr
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cfv
(
cv
x1
)
catm
)
)
)
)
)
⟶
wceq
cpclN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
catm
)
)
(
λ x2 .
cint
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x1
)
cpsubsp
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_oposet
:
wceq
cops
(
crab
(
λ x0 .
wa
(
wa
(
wcel
(
cfv
(
cv
x0
)
cbs
)
(
cdm
(
cfv
(
cv
x0
)
club
)
)
)
(
wcel
(
cfv
(
cv
x0
)
cbs
)
(
cdm
(
cfv
(
cv
x0
)
cglb
)
)
)
)
(
wex
(
λ x1 .
wa
(
wceq
(
cv
x1
)
(
cfv
(
cv
x0
)
coc
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
w3a
(
w3a
(
wcel
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wceq
(
cfv
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cv
x1
)
)
(
cv
x2
)
)
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
⟶
wbr
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cple
)
)
)
(
wceq
(
co
(
cv
x2
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cfv
(
cv
x0
)
cp1
)
)
(
wceq
(
co
(
cv
x2
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cmee
)
)
(
cfv
(
cv
x0
)
cp0
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(
λ x0 .
cpo
)
)
(proof)
Theorem
df_cmtN
:
wceq
ccmtN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
w3a
(
wcel
(
cv
x1
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wceq
(
cv
x1
)
(
co
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cmee
)
)
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
coc
)
)
(
cfv
(
cv
x0
)
cmee
)
)
(
cfv
(
cv
x0
)
cjn
)
)
)
)
)
)
(proof)
Theorem
df_ol
:
wceq
col
(
cin
clat
cops
)
(proof)
Theorem
df_oml
:
wceq
coml
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cple
)
⟶
wceq
(
cv
x2
)
(
co
(
cv
x1
)
(
co
(
cv
x2
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coc
)
)
(
cfv
(
cv
x0
)
cmee
)
)
(
cfv
(
cv
x0
)
cjn
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
col
)
)
(proof)
Theorem
df_covers
:
wceq
ccvr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
w3a
(
wa
(
wcel
(
cv
x1
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplt
)
)
(
wn
(
wrex
(
λ x3 .
wa
(
wbr
(
cv
x1
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cplt
)
)
(
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplt
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
)
(proof)
Theorem
df_ats
:
wceq
catm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wbr
(
cfv
(
cv
x0
)
cp0
)
(
cv
x1
)
(
cfv
(
cv
x0
)
ccvr
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_atl
:
wceq
cal
(
crab
(
λ x0 .
wa
(
wcel
(
cfv
(
cv
x0
)
cbs
)
(
cdm
(
cfv
(
cv
x0
)
cglb
)
)
)
(
wral
(
λ x1 .
wne
(
cv
x1
)
(
cfv
(
cv
x0
)
cp0
)
⟶
wrex
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x2 .
cfv
(
cv
x0
)
catm
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x0 .
clat
)
)
(proof)
Theorem
df_cvlat
:
wceq
clc
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wa
(
wn
(
wbr
(
cv
x1
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
)
)
(
wbr
(
cv
x1
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cfv
(
cv
x0
)
cple
)
)
⟶
wbr
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x0
)
catm
)
)
(
λ x1 .
cfv
(
cv
x0
)
catm
)
)
(
λ x0 .
cal
)
)
(proof)
Theorem
df_hlat
:
wceq
chlt
(
crab
(
λ x0 .
wa
(
wral
(
λ x1 .
wral
(
λ x2 .
wne
(
cv
x1
)
(
cv
x2
)
⟶
wrex
(
λ x3 .
w3a
(
wne
(
cv
x3
)
(
cv
x1
)
)
(
wne
(
cv
x3
)
(
cv
x2
)
)
(
wbr
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cfv
(
cv
x0
)
cple
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
catm
)
)
(
λ x2 .
cfv
(
cv
x0
)
catm
)
)
(
λ x1 .
cfv
(
cv
x0
)
catm
)
)
(
wrex
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wa
(
wa
(
wbr
(
cfv
(
cv
x0
)
cp0
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cplt
)
)
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplt
)
)
)
(
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cplt
)
)
(
wbr
(
cv
x3
)
(
cfv
(
cv
x0
)
cp1
)
(
cfv
(
cv
x0
)
cplt
)
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x0 .
cin
(
cin
coml
ccla
)
clc
)
)
(proof)
Theorem
df_llines
:
wceq
clln
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
ccvr
)
)
(
λ x2 .
cfv
(
cv
x0
)
catm
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_lplanes
:
wceq
clpl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
ccvr
)
)
(
λ x2 .
cfv
(
cv
x0
)
clln
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_lvols
:
wceq
clvol
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
ccvr
)
)
(
λ x2 .
cfv
(
cv
x0
)
clpl
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_lines
:
wceq
clines
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wa
(
wne
(
cv
x2
)
(
cv
x3
)
)
(
wceq
(
cv
x1
)
(
crab
(
λ x4 .
wbr
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x4 .
cfv
(
cv
x0
)
catm
)
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
catm
)
)
(
λ x2 .
cfv
(
cv
x0
)
catm
)
)
)
)
(proof)
Theorem
df_pointsN
:
wceq
cpointsN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wrex
(
λ x2 .
wceq
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
catm
)
)
)
)
(proof)
Theorem
df_psubsp
:
wceq
cpsubsp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wa
(
wss
(
cv
x1
)
(
cfv
(
cv
x0
)
catm
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cfv
(
cv
x0
)
cple
)
⟶
wcel
(
cv
x4
)
(
cv
x1
)
)
(
λ x4 .
cfv
(
cv
x0
)
catm
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
)
)
(proof)
Theorem
df_pmap
:
wceq
cpmap
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
crab
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x2 .
cfv
(
cv
x0
)
catm
)
)
)
)
(proof)
Theorem
df_padd
:
wceq
cpadd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
catm
)
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
catm
)
)
(
λ x1 x2 .
cun
(
cun
(
cv
x1
)
(
cv
x2
)
)
(
crab
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wbr
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cfv
(
cv
x0
)
catm
)
)
)
)
)
(proof)
Theorem
df_pclN
:
wceq
cpclN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
catm
)
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cfv
(
cv
x0
)
cpsubsp
)
)
)
)
)
(proof)