Search for blocks/addresses/...

Proofgold Asset

asset id
7a6de0674b8973a6c28ab4696ca7b2b35c2deb59c1cde83119698dcc3ba50e4a
asset hash
2fa5069c09c17f87611fef7f8cb5a00ae67d9702d02f929ec3da76e20e57b4ad
bday / block
36384
tx
722af..
preasset
doc published by PrCmT..
Known df_preset__df_drs__df_poset__df_plt__df_lub__df_glb__df_join__df_meet__df_toset__df_p0__df_p1__df_lat__df_clat__df_odu__df_ipo__df_dlat__df_ps__df_tsr : ∀ x0 : ο . (wceq cpreset (cab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wral (λ x5 . wral (λ x6 . wa (wbr (cv x4) (cv x4) (cv x3)) (wa (wbr (cv x4) (cv x5) (cv x3)) (wbr (cv x5) (cv x6) (cv x3))wbr (cv x4) (cv x6) (cv x3))) (λ x6 . cv x2)) (λ x5 . cv x2)) (λ x4 . cv x2)) (cfv (cv x1) cple)) (cfv (cv x1) cbs)))wceq cdrs (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wa (wne (cv x2) c0) (wral (λ x4 . wral (λ x5 . wrex (λ x6 . wa (wbr (cv x4) (cv x6) (cv x3)) (wbr (cv x5) (cv x6) (cv x3))) (λ x6 . cv x2)) (λ x5 . cv x2)) (λ x4 . cv x2))) (cfv (cv x1) cple)) (cfv (cv x1) cbs)) (λ x1 . cpreset))wceq cpo (cab (λ x1 . wex (λ x2 . wex (λ x3 . w3a (wceq (cv x2) (cfv (cv x1) cbs)) (wceq (cv x3) (cfv (cv x1) cple)) (wral (λ x4 . wral (λ x5 . wral (λ x6 . w3a (wbr (cv x4) (cv x4) (cv x3)) (wa (wbr (cv x4) (cv x5) (cv x3)) (wbr (cv x5) (cv x4) (cv x3))wceq (cv x4) (cv x5)) (wa (wbr (cv x4) (cv x5) (cv x3)) (wbr (cv x5) (cv x6) (cv x3))wbr (cv x4) (cv x6) (cv x3))) (λ x6 . cv x2)) (λ x5 . cv x2)) (λ x4 . cv x2))))))wceq cplt (cmpt (λ x1 . cvv) (λ x1 . cdif (cfv (cv x1) cple) cid))wceq club (cmpt (λ x1 . cvv) (λ x1 . cres (cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . crio (λ x3 . wa (wral (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x1) cple)) (λ x4 . cv x2)) (wral (λ x4 . wral (λ x5 . wbr (cv x5) (cv x4) (cfv (cv x1) cple)) (λ x5 . cv x2)wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs))) (cab (λ x2 . wreu (λ x3 . wa (wral (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x1) cple)) (λ x4 . cv x2)) (wral (λ x4 . wral (λ x5 . wbr (cv x5) (cv x4) (cfv (cv x1) cple)) (λ x5 . cv x2)wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs)))))wceq cglb (cmpt (λ x1 . cvv) (λ x1 . cres (cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . crio (λ x3 . wa (wral (λ x4 . wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (λ x4 . cv x2)) (wral (λ x4 . wral (λ x5 . wbr (cv x4) (cv x5) (cfv (cv x1) cple)) (λ x5 . cv x2)wbr (cv x4) (cv x3) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs))) (cab (λ x2 . wreu (λ x3 . wa (wral (λ x4 . wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (λ x4 . cv x2)) (wral (λ x4 . wral (λ x5 . wbr (cv x4) (cv x5) (cfv (cv x1) cple)) (λ x5 . cv x2)wbr (cv x4) (cv x3) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs)))))wceq cjn (cmpt (λ x1 . cvv) (λ x1 . coprab (λ x2 x3 x4 . wbr (cpr (cv x2) (cv x3)) (cv x4) (cfv (cv x1) club))))wceq cmee (cmpt (λ x1 . cvv) (λ x1 . coprab (λ x2 x3 x4 . wbr (cpr (cv x2) (cv x3)) (cv x4) (cfv (cv x1) cglb))))wceq ctos (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wral (λ x5 . wo (wbr (cv x4) (cv x5) (cv x3)) (wbr (cv x5) (cv x4) (cv x3))) (λ x5 . cv x2)) (λ x4 . cv x2)) (cfv (cv x1) cple)) (cfv (cv x1) cbs)) (λ x1 . cpo))wceq cp0 (cmpt (λ x1 . cvv) (λ x1 . cfv (cfv (cv x1) cbs) (cfv (cv x1) cglb)))wceq cp1 (cmpt (λ x1 . cvv) (λ x1 . cfv (cfv (cv x1) cbs) (cfv (cv x1) club)))wceq clat (crab (λ x1 . wa (wceq (cdm (cfv (cv x1) cjn)) (cxp (cfv (cv x1) cbs) (cfv (cv x1) cbs))) (wceq (cdm (cfv (cv x1) cmee)) (cxp (cfv (cv x1) cbs) (cfv (cv x1) cbs)))) (λ x1 . cpo))wceq ccla (crab (λ x1 . wa (wceq (cdm (cfv (cv x1) club)) (cpw (cfv (cv x1) cbs))) (wceq (cdm (cfv (cv x1) cglb)) (cpw (cfv (cv x1) cbs)))) (λ x1 . cpo))wceq codu (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (cop (cfv cnx cple) (ccnv (cfv (cv x1) cple))) csts))wceq cipo (cmpt (λ x1 . cvv) (λ x1 . csb (copab (λ x2 x3 . wa (wss (cpr (cv x2) (cv x3)) (cv x1)) (wss (cv x2) (cv x3)))) (λ x2 . cun (cpr (cop (cfv cnx cbs) (cv x1)) (cop (cfv cnx cts) (cfv (cv x2) cordt))) (cpr (cop (cfv cnx cple) (cv x2)) (cop (cfv cnx coc) (cmpt (λ x3 . cv x1) (λ x3 . cuni (crab (λ x4 . wceq (cin (cv x4) (cv x3)) c0) (λ x4 . cv x1)))))))))wceq cdlat (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wral (λ x5 . wral (λ x6 . wral (λ x7 . wceq (co (cv x5) (co (cv x6) (cv x7) (cv x3)) (cv x4)) (co (co (cv x5) (cv x6) (cv x4)) (co (cv x5) (cv x7) (cv x4)) (cv x3))) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2)) (cfv (cv x1) cmee)) (cfv (cv x1) cjn)) (cfv (cv x1) cbs)) (λ x1 . clat))wceq cps (cab (λ x1 . w3a (wrel (cv x1)) (wss (ccom (cv x1) (cv x1)) (cv x1)) (wceq (cin (cv x1) (ccnv (cv x1))) (cres cid (cuni (cuni (cv x1)))))))wceq ctsr (crab (λ x1 . wss (cxp (cdm (cv x1)) (cdm (cv x1))) (cun (cv x1) (ccnv (cv x1)))) (λ x1 . cps))x0)x0
Theorem df_preset : wceq cpreset (cab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wa (wbr (cv x3) (cv x3) (cv x2)) (wa (wbr (cv x3) (cv x4) (cv x2)) (wbr (cv x4) (cv x5) (cv x2))wbr (cv x3) (cv x5) (cv x2))) (λ x5 . cv x1)) (λ x4 . cv x1)) (λ x3 . cv x1)) (cfv (cv x0) cple)) (cfv (cv x0) cbs))) (proof)
Theorem df_drs : wceq cdrs (crab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wa (wne (cv x1) c0) (wral (λ x3 . wral (λ x4 . wrex (λ x5 . wa (wbr (cv x3) (cv x5) (cv x2)) (wbr (cv x4) (cv x5) (cv x2))) (λ x5 . cv x1)) (λ x4 . cv x1)) (λ x3 . cv x1))) (cfv (cv x0) cple)) (cfv (cv x0) cbs)) (λ x0 . cpreset)) (proof)
Theorem df_poset : wceq cpo (cab (λ x0 . wex (λ x1 . wex (λ x2 . w3a (wceq (cv x1) (cfv (cv x0) cbs)) (wceq (cv x2) (cfv (cv x0) cple)) (wral (λ x3 . wral (λ x4 . wral (λ x5 . w3a (wbr (cv x3) (cv x3) (cv x2)) (wa (wbr (cv x3) (cv x4) (cv x2)) (wbr (cv x4) (cv x3) (cv x2))wceq (cv x3) (cv x4)) (wa (wbr (cv x3) (cv x4) (cv x2)) (wbr (cv x4) (cv x5) (cv x2))wbr (cv x3) (cv x5) (cv x2))) (λ x5 . cv x1)) (λ x4 . cv x1)) (λ x3 . cv x1)))))) (proof)
Theorem df_plt : wceq cplt (cmpt (λ x0 . cvv) (λ x0 . cdif (cfv (cv x0) cple) cid)) (proof)
Theorem df_lub : wceq club (cmpt (λ x0 . cvv) (λ x0 . cres (cmpt (λ x1 . cpw (cfv (cv x0) cbs)) (λ x1 . crio (λ x2 . wa (wral (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x0) cple)) (λ x3 . cv x1)) (wral (λ x3 . wral (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x0) cple)) (λ x4 . cv x1)wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs))) (cab (λ x1 . wreu (λ x2 . wa (wral (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x0) cple)) (λ x3 . cv x1)) (wral (λ x3 . wral (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x0) cple)) (λ x4 . cv x1)wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs))))) (proof)
Theorem df_glb : wceq cglb (cmpt (λ x0 . cvv) (λ x0 . cres (cmpt (λ x1 . cpw (cfv (cv x0) cbs)) (λ x1 . crio (λ x2 . wa (wral (λ x3 . wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (λ x3 . cv x1)) (wral (λ x3 . wral (λ x4 . wbr (cv x3) (cv x4) (cfv (cv x0) cple)) (λ x4 . cv x1)wbr (cv x3) (cv x2) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs))) (cab (λ x1 . wreu (λ x2 . wa (wral (λ x3 . wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (λ x3 . cv x1)) (wral (λ x3 . wral (λ x4 . wbr (cv x3) (cv x4) (cfv (cv x0) cple)) (λ x4 . cv x1)wbr (cv x3) (cv x2) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs))))) (proof)
Theorem df_join : wceq cjn (cmpt (λ x0 . cvv) (λ x0 . coprab (λ x1 x2 x3 . wbr (cpr (cv x1) (cv x2)) (cv x3) (cfv (cv x0) club)))) (proof)
Theorem df_meet : wceq cmee (cmpt (λ x0 . cvv) (λ x0 . coprab (λ x1 x2 x3 . wbr (cpr (cv x1) (cv x2)) (cv x3) (cfv (cv x0) cglb)))) (proof)
Theorem df_toset : wceq ctos (crab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wral (λ x3 . wral (λ x4 . wo (wbr (cv x3) (cv x4) (cv x2)) (wbr (cv x4) (cv x3) (cv x2))) (λ x4 . cv x1)) (λ x3 . cv x1)) (cfv (cv x0) cple)) (cfv (cv x0) cbs)) (λ x0 . cpo)) (proof)
Theorem df_p0 : wceq cp0 (cmpt (λ x0 . cvv) (λ x0 . cfv (cfv (cv x0) cbs) (cfv (cv x0) cglb))) (proof)
Theorem df_p1 : wceq cp1 (cmpt (λ x0 . cvv) (λ x0 . cfv (cfv (cv x0) cbs) (cfv (cv x0) club))) (proof)
Theorem df_lat : wceq clat (crab (λ x0 . wa (wceq (cdm (cfv (cv x0) cjn)) (cxp (cfv (cv x0) cbs) (cfv (cv x0) cbs))) (wceq (cdm (cfv (cv x0) cmee)) (cxp (cfv (cv x0) cbs) (cfv (cv x0) cbs)))) (λ x0 . cpo)) (proof)
Theorem df_clat : wceq ccla (crab (λ x0 . wa (wceq (cdm (cfv (cv x0) club)) (cpw (cfv (cv x0) cbs))) (wceq (cdm (cfv (cv x0) cglb)) (cpw (cfv (cv x0) cbs)))) (λ x0 . cpo)) (proof)
Theorem df_odu : wceq codu (cmpt (λ x0 . cvv) (λ x0 . co (cv x0) (cop (cfv cnx cple) (ccnv (cfv (cv x0) cple))) csts)) (proof)
Theorem df_ipo : wceq cipo (cmpt (λ x0 . cvv) (λ x0 . csb (copab (λ x1 x2 . wa (wss (cpr (cv x1) (cv x2)) (cv x0)) (wss (cv x1) (cv x2)))) (λ x1 . cun (cpr (cop (cfv cnx cbs) (cv x0)) (cop (cfv cnx cts) (cfv (cv x1) cordt))) (cpr (cop (cfv cnx cple) (cv x1)) (cop (cfv cnx coc) (cmpt (λ x2 . cv x0) (λ x2 . cuni (crab (λ x3 . wceq (cin (cv x3) (cv x2)) c0) (λ x3 . cv x0))))))))) (proof)
Theorem df_dlat : wceq cdlat (crab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wral (λ x5 . wral (λ x6 . wceq (co (cv x4) (co (cv x5) (cv x6) (cv x2)) (cv x3)) (co (co (cv x4) (cv x5) (cv x3)) (co (cv x4) (cv x6) (cv x3)) (cv x2))) (λ x6 . cv x1)) (λ x5 . cv x1)) (λ x4 . cv x1)) (cfv (cv x0) cmee)) (cfv (cv x0) cjn)) (cfv (cv x0) cbs)) (λ x0 . clat)) (proof)
Theorem df_ps : wceq cps (cab (λ x0 . w3a (wrel (cv x0)) (wss (ccom (cv x0) (cv x0)) (cv x0)) (wceq (cin (cv x0) (ccnv (cv x0))) (cres cid (cuni (cuni (cv x0))))))) (proof)
Theorem df_tsr : wceq ctsr (crab (λ x0 . wss (cxp (cdm (cv x0)) (cdm (cv x0))) (cun (cv x0) (ccnv (cv x0)))) (λ x0 . cps)) (proof)