Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr3Yd..
/
cc2d4..
PUhSP..
/
a45ce..
vout
Pr3Yd..
/
ba0eb..
0.10 bars
TMcQV..
/
6eb7b..
ownership of
a1b53..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJeN..
/
4aaba..
ownership of
ff5f6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGbS..
/
aa7c7..
ownership of
3165d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUqH..
/
88e00..
ownership of
dac68..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP4j..
/
3a6b4..
ownership of
9b1d3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaeS..
/
4c5e1..
ownership of
9ad5a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSFD..
/
256dc..
ownership of
b0a9a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQD3..
/
70dad..
ownership of
c50d3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY8k..
/
f9669..
ownership of
f5ce3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZbb..
/
26a17..
ownership of
f4719..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH79..
/
c0874..
ownership of
4e4b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaVU..
/
4512c..
ownership of
70c0b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKnS..
/
ead97..
ownership of
df438..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbxJ..
/
bd78d..
ownership of
f55df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFJJ..
/
773ab..
ownership of
b3e1c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ4p..
/
498ec..
ownership of
acfbc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMFx..
/
37498..
ownership of
40f35..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRqe..
/
1a507..
ownership of
01aec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWi7..
/
5b58c..
ownership of
4af9d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdEA..
/
e076a..
ownership of
2e094..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKtf..
/
51952..
ownership of
c954c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTSk..
/
b9c48..
ownership of
caa0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXt4..
/
48bda..
ownership of
c5d79..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdtZ..
/
a00d6..
ownership of
ab690..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXuN..
/
ed500..
ownership of
4fc91..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTeo..
/
8d4be..
ownership of
8eacd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcG2..
/
18e0f..
ownership of
e31ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSJL..
/
5197e..
ownership of
9d6d3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFES..
/
30720..
ownership of
f495a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPtk..
/
381f5..
ownership of
90648..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVPV..
/
b07e2..
ownership of
c8ce6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLFQ..
/
1d4d5..
ownership of
26cc4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKfM..
/
c6d90..
ownership of
eca38..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUq7..
/
671cc..
ownership of
606ea..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTqo..
/
23a4c..
ownership of
4b0a5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVm9..
/
b5092..
ownership of
68feb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUe9S..
/
7a6de..
doc published by
PrCmT..
Known
df_preset__df_drs__df_poset__df_plt__df_lub__df_glb__df_join__df_meet__df_toset__df_p0__df_p1__df_lat__df_clat__df_odu__df_ipo__df_dlat__df_ps__df_tsr
:
∀ x0 : ο .
(
wceq
cpreset
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wa
(
wbr
(
cv
x4
)
(
cv
x4
)
(
cv
x3
)
)
(
wa
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
wbr
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
⟶
wbr
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cdrs
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wne
(
cv
x2
)
c0
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wrex
(
λ x6 .
wa
(
wbr
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
(
wbr
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cpreset
)
)
⟶
wceq
cpo
(
cab
(
λ x1 .
wex
(
λ x2 .
wex
(
λ x3 .
w3a
(
wceq
(
cv
x2
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wceq
(
cv
x3
)
(
cfv
(
cv
x1
)
cple
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
w3a
(
wbr
(
cv
x4
)
(
cv
x4
)
(
cv
x3
)
)
(
wa
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
wbr
(
cv
x5
)
(
cv
x4
)
(
cv
x3
)
)
⟶
wceq
(
cv
x4
)
(
cv
x5
)
)
(
wa
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
wbr
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
⟶
wbr
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
)
)
)
)
⟶
wceq
cplt
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cdif
(
cfv
(
cv
x1
)
cple
)
cid
)
)
⟶
wceq
club
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cres
(
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
crio
(
λ x3 .
wa
(
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cv
x2
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x5
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x5 .
cv
x2
)
⟶
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
(
cab
(
λ x2 .
wreu
(
λ x3 .
wa
(
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cv
x2
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x5
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x5 .
cv
x2
)
⟶
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
cglb
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cres
(
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
crio
(
λ x3 .
wa
(
wral
(
λ x4 .
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cv
x2
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x5 .
cv
x2
)
⟶
wbr
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
(
cab
(
λ x2 .
wreu
(
λ x3 .
wa
(
wral
(
λ x4 .
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cv
x2
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x5 .
cv
x2
)
⟶
wbr
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
cjn
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
coprab
(
λ x2 x3 x4 .
wbr
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x4
)
(
cfv
(
cv
x1
)
club
)
)
)
)
⟶
wceq
cmee
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
coprab
(
λ x2 x3 x4 .
wbr
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cglb
)
)
)
)
⟶
wceq
ctos
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wo
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
wbr
(
cv
x5
)
(
cv
x4
)
(
cv
x3
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cpo
)
)
⟶
wceq
cp0
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cglb
)
)
)
⟶
wceq
cp1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
club
)
)
)
⟶
wceq
clat
(
crab
(
λ x1 .
wa
(
wceq
(
cdm
(
cfv
(
cv
x1
)
cjn
)
)
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
)
(
wceq
(
cdm
(
cfv
(
cv
x1
)
cmee
)
)
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
)
)
(
λ x1 .
cpo
)
)
⟶
wceq
ccla
(
crab
(
λ x1 .
wa
(
wceq
(
cdm
(
cfv
(
cv
x1
)
club
)
)
(
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
(
wceq
(
cdm
(
cfv
(
cv
x1
)
cglb
)
)
(
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
(
λ x1 .
cpo
)
)
⟶
wceq
codu
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cv
x1
)
(
cop
(
cfv
cnx
cple
)
(
ccnv
(
cfv
(
cv
x1
)
cple
)
)
)
csts
)
)
⟶
wceq
cipo
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
copab
(
λ x2 x3 .
wa
(
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
wss
(
cv
x2
)
(
cv
x3
)
)
)
)
(
λ x2 .
cun
(
cpr
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cv
x2
)
cordt
)
)
)
(
cpr
(
cop
(
cfv
cnx
cple
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
coc
)
(
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cuni
(
crab
(
λ x4 .
wceq
(
cin
(
cv
x4
)
(
cv
x3
)
)
c0
)
(
λ x4 .
cv
x1
)
)
)
)
)
)
)
)
)
⟶
wceq
cdlat
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wceq
(
co
(
cv
x5
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
(
cv
x4
)
)
(
co
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x4
)
)
(
cv
x3
)
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cmee
)
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
clat
)
)
⟶
wceq
cps
(
cab
(
λ x1 .
w3a
(
wrel
(
cv
x1
)
)
(
wss
(
ccom
(
cv
x1
)
(
cv
x1
)
)
(
cv
x1
)
)
(
wceq
(
cin
(
cv
x1
)
(
ccnv
(
cv
x1
)
)
)
(
cres
cid
(
cuni
(
cuni
(
cv
x1
)
)
)
)
)
)
)
⟶
wceq
ctsr
(
crab
(
λ x1 .
wss
(
cxp
(
cdm
(
cv
x1
)
)
(
cdm
(
cv
x1
)
)
)
(
cun
(
cv
x1
)
(
ccnv
(
cv
x1
)
)
)
)
(
λ x1 .
cps
)
)
⟶
x0
)
⟶
x0
Theorem
df_preset
:
wceq
cpreset
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wa
(
wbr
(
cv
x3
)
(
cv
x3
)
(
cv
x2
)
)
(
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
⟶
wbr
(
cv
x3
)
(
cv
x5
)
(
cv
x2
)
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_drs
:
wceq
cdrs
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wa
(
wne
(
cv
x1
)
c0
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wrex
(
λ x5 .
wa
(
wbr
(
cv
x3
)
(
cv
x5
)
(
cv
x2
)
)
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cpreset
)
)
(proof)
Theorem
df_poset
:
wceq
cpo
(
cab
(
λ x0 .
wex
(
λ x1 .
wex
(
λ x2 .
w3a
(
wceq
(
cv
x1
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wceq
(
cv
x2
)
(
cfv
(
cv
x0
)
cple
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
w3a
(
wbr
(
cv
x3
)
(
cv
x3
)
(
cv
x2
)
)
(
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
wbr
(
cv
x4
)
(
cv
x3
)
(
cv
x2
)
)
⟶
wceq
(
cv
x3
)
(
cv
x4
)
)
(
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
⟶
wbr
(
cv
x3
)
(
cv
x5
)
(
cv
x2
)
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_plt
:
wceq
cplt
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cdif
(
cfv
(
cv
x0
)
cple
)
cid
)
)
(proof)
Theorem
df_lub
:
wceq
club
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cres
(
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
crio
(
λ x2 .
wa
(
wral
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x4 .
cv
x1
)
⟶
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
(
cab
(
λ x1 .
wreu
(
λ x2 .
wa
(
wral
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x4 .
cv
x1
)
⟶
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_glb
:
wceq
cglb
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cres
(
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
crio
(
λ x2 .
wa
(
wral
(
λ x3 .
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x4 .
cv
x1
)
⟶
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
(
cab
(
λ x1 .
wreu
(
λ x2 .
wa
(
wral
(
λ x3 .
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x4 .
cv
x1
)
⟶
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_join
:
wceq
cjn
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
coprab
(
λ x1 x2 x3 .
wbr
(
cpr
(
cv
x1
)
(
cv
x2
)
)
(
cv
x3
)
(
cfv
(
cv
x0
)
club
)
)
)
)
(proof)
Theorem
df_meet
:
wceq
cmee
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
coprab
(
λ x1 x2 x3 .
wbr
(
cpr
(
cv
x1
)
(
cv
x2
)
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cglb
)
)
)
)
(proof)
Theorem
df_toset
:
wceq
ctos
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wo
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
wbr
(
cv
x4
)
(
cv
x3
)
(
cv
x2
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cpo
)
)
(proof)
Theorem
df_p0
:
wceq
cp0
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cglb
)
)
)
(proof)
Theorem
df_p1
:
wceq
cp1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
club
)
)
)
(proof)
Theorem
df_lat
:
wceq
clat
(
crab
(
λ x0 .
wa
(
wceq
(
cdm
(
cfv
(
cv
x0
)
cjn
)
)
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(
wceq
(
cdm
(
cfv
(
cv
x0
)
cmee
)
)
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(
λ x0 .
cpo
)
)
(proof)
Theorem
df_clat
:
wceq
ccla
(
crab
(
λ x0 .
wa
(
wceq
(
cdm
(
cfv
(
cv
x0
)
club
)
)
(
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
(
wceq
(
cdm
(
cfv
(
cv
x0
)
cglb
)
)
(
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(
λ x0 .
cpo
)
)
(proof)
Theorem
df_odu
:
wceq
codu
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cv
x0
)
(
cop
(
cfv
cnx
cple
)
(
ccnv
(
cfv
(
cv
x0
)
cple
)
)
)
csts
)
)
(proof)
Theorem
df_ipo
:
wceq
cipo
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
copab
(
λ x1 x2 .
wa
(
wss
(
cpr
(
cv
x1
)
(
cv
x2
)
)
(
cv
x0
)
)
(
wss
(
cv
x1
)
(
cv
x2
)
)
)
)
(
λ x1 .
cun
(
cpr
(
cop
(
cfv
cnx
cbs
)
(
cv
x0
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cv
x1
)
cordt
)
)
)
(
cpr
(
cop
(
cfv
cnx
cple
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
coc
)
(
cmpt
(
λ x2 .
cv
x0
)
(
λ x2 .
cuni
(
crab
(
λ x3 .
wceq
(
cin
(
cv
x3
)
(
cv
x2
)
)
c0
)
(
λ x3 .
cv
x0
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_dlat
:
wceq
cdlat
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
co
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x2
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cmee
)
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
clat
)
)
(proof)
Theorem
df_ps
:
wceq
cps
(
cab
(
λ x0 .
w3a
(
wrel
(
cv
x0
)
)
(
wss
(
ccom
(
cv
x0
)
(
cv
x0
)
)
(
cv
x0
)
)
(
wceq
(
cin
(
cv
x0
)
(
ccnv
(
cv
x0
)
)
)
(
cres
cid
(
cuni
(
cuni
(
cv
x0
)
)
)
)
)
)
)
(proof)
Theorem
df_tsr
:
wceq
ctsr
(
crab
(
λ x0 .
wss
(
cxp
(
cdm
(
cv
x0
)
)
(
cdm
(
cv
x0
)
)
)
(
cun
(
cv
x0
)
(
ccnv
(
cv
x0
)
)
)
)
(
λ x0 .
cps
)
)
(proof)