Search for blocks/addresses/...

Proofgold Asset

asset id
7a79ae19960f5f1d06ab47454111a7db301ef57594cd585c7b2365c64c9f2212
asset hash
95578d3d115f099d36bc5891d8dea1a00966bff11fc99a63ea590429642507e5
bday / block
35060
tx
f2807..
preasset
doc published by PrKYB..
Definition 28b0a.. := λ x0 . λ x1 : ι → ι → ι . ∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 (x1 x2 x3) x4 = x1 x2 (x1 x3 x4)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition 0941b.. := λ x0 . λ x1 : ι → ι → ι . and (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 (x1 x2 x3) x4 = x1 x2 (x1 x3 x4)) (∀ x2 : ο . (∀ x3 . and (x3x0) (∀ x4 . x4x0and (x1 x4 x3 = x4) (x1 x3 x4 = x4))x2)x2)
Definition explicit_Groupexplicit_Group := λ x0 . λ x1 : ι → ι → ι . and (and (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0) (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)) (∀ x2 : ο . (∀ x3 . and (x3x0) (and (∀ x4 . x4x0and (x1 x3 x4 = x4) (x1 x4 x3 = x4)) (∀ x4 . x4x0∀ x5 : ο . (∀ x6 . and (x6x0) (and (x1 x4 x6 = x3) (x1 x6 x4 = x3))x5)x5))x2)x2)
Definition explicit_abelianexplicit_abelian := λ x0 . λ x1 : ι → ι → ι . ∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3 = x1 x3 x2
Definition 127dd.. := λ x0 . λ x1 : ι → ι → ι . and (explicit_Group x0 x1) (explicit_abelian x0 x1)
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Theorem e4946.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)∀ x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)28b0a.. x0 x2 = 28b0a.. x0 x1 (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem e219d.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)∀ x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)0941b.. x0 x2 = 0941b.. x0 x1 (proof)
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known prop_extprop_ext : ∀ x0 x1 : ο . iff x0 x1x0 = x1
Known explicit_Group_repindepexplicit_Group_repindep : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)iff (explicit_Group x0 x1) (explicit_Group x0 x2)
Theorem 68b43.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)explicit_Group x0 x2 = explicit_Group x0 x1 (proof)
Known explicit_abelian_repindepexplicit_abelian_repindep : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)iff (explicit_abelian x0 x1) (explicit_abelian x0 x2)
Theorem 40a7b.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)127dd.. x0 x2 = 127dd.. x0 x1 (proof)
Param ordsuccordsucc : ιι
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Param pack_bpack_b : ιCT2 ι
Definition struct_bstruct_b := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)x1 (pack_b x2 x3))x1 x0
Param unpack_b_ounpack_b_o : ι(ι(ιιι) → ο) → ο
Param MagmaHomHom_struct_b : ιιιο
Param struct_idstruct_id : ιι
Param lamSigma : ι(ιι) → ι
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Known pack_struct_b_Ipack_struct_b_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)struct_b (pack_b x0 x1)
Known In_0_1In_0_1 : 01
Known unpack_b_o_equnpack_b_o_eq : ∀ x0 : ι → (ι → ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)unpack_b_o (pack_b x1 x2) x0 = x0 x1 x2
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 2cd8d..Hom_struct_b_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 . MagmaHom (pack_b x0 x2) (pack_b x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0ap x4 (x2 x6 x7) = x3 (ap x4 x6) (ap x4 x7))
Known pack_b_0_eq2pack_b_0_eq2 : ∀ x0 . ∀ x1 : ι → ι → ι . x0 = ap (pack_b x0 x1) 0
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem 1e9a4.. : ∀ x0 : ι → (ι → ι → ι) → ο . (∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x1)∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)(∀ x1 : ι → ι → ι . (∀ x2 . x21∀ x3 . x310 = x1 x2 x3)x0 1 x1)∀ x1 : ο . (∀ x2 . (∀ x3 : ο . (∀ x4 : ι → ι . MetaCat_terminal_p (λ x5 . and (struct_b x5) (unpack_b_o x5 x0)) MagmaHom struct_id struct_comp x2 x4x3)x3)x1)x1 (proof)
Definition Semigroupstruct_b_semigroup := λ x0 . and (struct_b x0) (unpack_b_o x0 (λ x1 . λ x2 : ι → ι → ι . ∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 (x2 x3 x4) x5 = x2 x3 (x2 x4 x5)))
Theorem aa3f3..MetaCat_struct_b_semigroup_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p Semigroup MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Definition Monoidstruct_b_monoid := λ x0 . and (struct_b x0) (unpack_b_o x0 (λ x1 . λ x2 : ι → ι → ι . and (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 (x2 x3 x4) x5 = x2 x3 (x2 x4 x5)) (∀ x3 : ο . (∀ x4 . and (x4x1) (∀ x5 . x5x1and (x2 x5 x4 = x5) (x2 x4 x5 = x5))x3)x3)))
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Theorem e4b9e..MetaCat_struct_b_monoid_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p Monoid MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem 1a38b.. : ∀ x0 : ι → ι → ι . x0 0 0 = 0explicit_Group 1 x0 (proof)
Definition GroupGroup := λ x0 . and (struct_b x0) (unpack_b_o x0 explicit_Group)
Theorem 4ce24..MetaCat_struct_b_group_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p Group MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Definition abelian_Group_altstruct_b_abelian_group := λ x0 . and (struct_b x0) (unpack_b_o x0 (λ x1 . λ x2 : ι → ι → ι . and (explicit_Group x1 x2) (explicit_abelian x1 x2)))
Theorem ad386..MetaCat_struct_b_abelian_group_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p abelian_Group_alt MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Known 97db2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 : ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 x9 . x0 x8x0 x9∀ x10 : ο . (x0 (x4 x8 x9)x1 (x4 x8 x9) x8 (x5 x8 x9)x1 (x4 x8 x9) x9 (x6 x8 x9)(∀ x11 . x0 x11∀ x12 x13 . x1 x11 x8 x12x1 x11 x9 x13and (and (and (x1 x11 (x4 x8 x9) (x7 x8 x9 x11 x12 x13)) (x3 x11 (x4 x8 x9) x8 (x5 x8 x9) (x7 x8 x9 x11 x12 x13) = x12)) (x3 x11 (x4 x8 x9) x9 (x6 x8 x9) (x7 x8 x9 x11 x12 x13) = x13)) (∀ x14 . x1 x11 (x4 x8 x9) x14x3 x11 (x4 x8 x9) x8 (x5 x8 x9) x14 = x12x3 x11 (x4 x8 x9) x9 (x6 x8 x9) x14 = x13x14 = x7 x8 x9 x11 x12 x13))x10)x10)MetaCat_product_constr_p x0 x1 x2 x3 x4 x5 x6 x7
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param If_iIf_i : οιιι
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known Pi_extPi_ext : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1∀ x3 . x3Pi x0 x1(∀ x4 . x4x0ap x2 x4 = ap x3 x4)x2 = x3
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Param unpack_b_iunpack_b_i : ι(ιCT2 ι) → ι
Known unpack_b_i_equnpack_b_i_eq : ∀ x0 : ι → (ι → ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)unpack_b_i (pack_b x1 x2) x0 = x0 x1 x2
Known pack_b_extpack_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)pack_b x0 x1 = pack_b x0 x2
Theorem 8633f.. : ∀ x0 : ι → (ι → ι → ι) → ο . (∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x1)∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)(∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x1)x0 x1 x2∀ x3 . ∀ x4 : ι → ι → ι . (∀ x5 . x5x3∀ x6 . x6x3x4 x5 x6x3)x0 x3 x4∀ x5 : ι → ι → ι . (∀ x6 . x6setprod x1 x3∀ x7 . x7setprod x1 x3lam 2 (λ x9 . If_i (x9 = 0) (x2 (ap x6 0) (ap x7 0)) (x4 (ap x6 1) (ap x7 1))) = x5 x6 x7)x0 (setprod x1 x3) x5)∀ x1 : ο . (∀ x2 : ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p (λ x9 . and (struct_b x9) (unpack_b_o x9 x0)) MagmaHom struct_id struct_comp x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1 (proof)
Theorem 57959.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)28b0a.. x0 x1∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)28b0a.. x2 x3∀ x4 : ι → ι → ι . (∀ x5 . x5setprod x0 x2∀ x6 . x6setprod x0 x2lam 2 (λ x8 . If_i (x8 = 0) (x1 (ap x5 0) (ap x6 0)) (x3 (ap x5 1) (ap x6 1))) = x4 x5 x6)28b0a.. (setprod x0 x2) x4 (proof)
Theorem 0e909.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)0941b.. x0 x1∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)0941b.. x2 x3∀ x4 : ι → ι → ι . (∀ x5 . x5setprod x0 x2∀ x6 . x6setprod x0 x2lam 2 (λ x8 . If_i (x8 = 0) (x1 (ap x5 0) (ap x6 0)) (x3 (ap x5 1) (ap x6 1))) = x4 x5 x6)0941b.. (setprod x0 x2) x4 (proof)
Theorem 6bacd.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)explicit_Group x0 x1∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)explicit_Group x2 x3∀ x4 : ι → ι → ι . (∀ x5 . x5setprod x0 x2∀ x6 . x6setprod x0 x2lam 2 (λ x8 . If_i (x8 = 0) (x1 (ap x5 0) (ap x6 0)) (x3 (ap x5 1) (ap x6 1))) = x4 x5 x6)explicit_Group (setprod x0 x2) x4 (proof)
Theorem 183c5..MetaCat_struct_b_semigroup_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Semigroup MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 64746..MetaCat_struct_b_monoid_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Monoid MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 05bdf..MetaCat_struct_b_group_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Group MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 760b6..MetaCat_struct_b_abelian_group_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p abelian_Group_alt MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param MetaCat_equalizer_struct_pequalizer_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Known 500a0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 : ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ι . (∀ x7 x8 x9 x10 . x0 x7x0 x8x1 x7 x8 x9x1 x7 x8 x10∀ x11 : ο . (x0 (x4 x7 x8 x9 x10)x1 (x4 x7 x8 x9 x10) x7 (x5 x7 x8 x9 x10)x3 (x4 x7 x8 x9 x10) x7 x8 x9 (x5 x7 x8 x9 x10) = x3 (x4 x7 x8 x9 x10) x7 x8 x10 (x5 x7 x8 x9 x10)(∀ x12 . x0 x12∀ x13 . x1 x12 x7 x13x3 x12 x7 x8 x9 x13 = x3 x12 x7 x8 x10 x13and (and (x1 x12 (x4 x7 x8 x9 x10) (x6 x7 x8 x9 x10 x12 x13)) (x3 x12 (x4 x7 x8 x9 x10) x7 (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10 x12 x13) = x13)) (∀ x14 . x1 x12 (x4 x7 x8 x9 x10) x14x3 x12 (x4 x7 x8 x9 x10) x7 (x5 x7 x8 x9 x10) x14 = x13x14 = x6 x7 x8 x9 x10 x12 x13))x11)x11)MetaCat_equalizer_struct_p x0 x1 x2 x3 x4 x5 x6
Param SepSep : ι(ιο) → ι
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Theorem 01619.. : ∀ x0 : ι → (ι → ι → ι) → ο . (∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x1)∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)(∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x1)x0 x1 x2∀ x3 . ∀ x4 : ι → ι → ι . (∀ x5 . x5x3∀ x6 . x6x3x4 x5 x6x3)x0 x3 x4∀ x5 x6 . MagmaHom (pack_b x1 x2) (pack_b x3 x4) x5MagmaHom (pack_b x1 x2) (pack_b x3 x4) x6∀ x7 : ι → ι → ι . (∀ x8 . x8{x9 ∈ x1|ap x5 x9 = ap x6 x9}∀ x9 . x9{x10 ∈ x1|ap x5 x10 = ap x6 x10}x2 x8 x9 = x7 x8 x9)x0 {x8 ∈ x1|ap x5 x8 = ap x6 x8} x7)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p (λ x7 . and (struct_b x7) (unpack_b_o x7 x0)) MagmaHom struct_id struct_comp x2 x4 x6x5)x5)x3)x3)x1)x1 (proof)
Theorem 1dd10.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)28b0a.. x0 x1∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)28b0a.. x2 x3∀ x4 x5 . MagmaHom (pack_b x0 x1) (pack_b x2 x3) x4MagmaHom (pack_b x0 x1) (pack_b x2 x3) x5∀ x6 : ι → ι → ι . (∀ x7 . x7{x8 ∈ x0|ap x4 x8 = ap x5 x8}∀ x8 . x8{x9 ∈ x0|ap x4 x9 = ap x5 x9}x1 x7 x8 = x6 x7 x8)28b0a.. {x7 ∈ x0|ap x4 x7 = ap x5 x7} x6 (proof)
Theorem c31a3.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)explicit_Group x0 x1∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)explicit_Group x2 x3∀ x4 x5 . MagmaHom (pack_b x0 x1) (pack_b x2 x3) x4MagmaHom (pack_b x0 x1) (pack_b x2 x3) x5∀ x6 : ι → ι → ι . (∀ x7 . x7{x8 ∈ x0|ap x4 x8 = ap x5 x8}∀ x8 . x8{x9 ∈ x0|ap x4 x9 = ap x5 x9}x1 x7 x8 = x6 x7 x8)explicit_Group {x7 ∈ x0|ap x4 x7 = ap x5 x7} x6 (proof)
Theorem 9347c..MetaCat_struct_b_semigroup_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p Semigroup MagmaHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Theorem e6d9e..MetaCat_struct_b_group_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p Group MagmaHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Theorem 994bf..MetaCat_struct_b_abelian_group_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p abelian_Group_alt MagmaHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Param MetaCat_pullback_struct_ppullback_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known ed2b0..product_equalizer_pullback_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4
Known 88d6d..MetaCat_struct_b_semigroup : MetaCat Semigroup MagmaHom struct_id struct_comp
Theorem 61ba2..MetaCat_struct_b_semigroup_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p Semigroup MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Known d87b9..MetaCat_struct_b_group : MetaCat Group MagmaHom struct_id struct_comp
Theorem 42863..MetaCat_struct_b_group_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p Group MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Known da44b..MetaCat_struct_b_abelian_group : MetaCat abelian_Group_alt MagmaHom struct_id struct_comp
Theorem e443a..MetaCat_struct_b_abelian_group_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p abelian_Group_alt MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)