Search for blocks/addresses/...
Proofgold Asset
asset id
7bb71fe8e8f1504094427f4c40ae5160fc8f917e6ad2255aae6ae16cab84b713
asset hash
cf37e4a8b58cd6d709c1e566a953f30b7aff42b03e0f7b95ae193ddeffc205d2
bday / block
19831
tx
3dc23..
preasset
doc published by
Pr4zB..
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
setsum
setsum
:
ι
→
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
Inj0
Inj0
:
ι
→
ι
Param
Inj1
Inj1
:
ι
→
ι
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
Inj0_setsum
Inj0_setsum
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
Inj0
x2
∈
setsum
x0
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
Inj1_setsum
Inj1_setsum
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
Inj1
x2
∈
setsum
x0
x1
Known
Inj0_inj
Inj0_inj
:
∀ x0 x1 .
Inj0
x0
=
Inj0
x1
⟶
x0
=
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
Inj0_Inj1_neq
Inj0_Inj1_neq
:
∀ x0 x1 .
Inj0
x0
=
Inj1
x1
⟶
∀ x2 : ο .
x2
Known
Inj1_inj
Inj1_inj
:
∀ x0 x1 .
Inj1
x0
=
Inj1
x1
⟶
x0
=
x1
Known
f4c7c..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
x2
(
Inj0
x3
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
x2
(
Inj1
x3
)
)
⟶
∀ x3 .
x3
∈
setsum
x0
x1
⟶
x2
x3
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Theorem
d778e..
:
∀ x0 x1 x2 x3 .
equip
x0
x2
⟶
equip
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
equip
(
binunion
x0
x1
)
(
setsum
x2
x3
)
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Param
nat_p
nat_p
:
ι
→
ο
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
480b2..
:
add_nat
u3
u1
=
u4
(proof)
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Theorem
561b1..
:
add_nat
u5
u1
=
u6
(proof)
Definition
u7
:=
ordsucc
u6
Known
nat_1
nat_1
:
nat_p
1
Theorem
bd216..
:
add_nat
u5
u2
=
u7
(proof)
Definition
u8
:=
ordsucc
u7
Known
nat_2
nat_2
:
nat_p
2
Theorem
e705e..
:
add_nat
u5
u3
=
u8
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Known
Subq_binintersection_eq
Subq_binintersection_eq
:
∀ x0 x1 .
x0
⊆
x1
=
(
binintersect
x0
x1
=
x0
)
Known
a8a92..
:
∀ x0 x1 .
x0
=
binunion
(
setminus
x0
x1
)
(
binintersect
x0
x1
)
Known
binunion_com
binunion_com
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x1
x0
Known
binintersect_com
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Theorem
80238..
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
=
binunion
x0
(
setminus
x1
x0
)
(proof)
Param
UPair
UPair
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Theorem
cbaf1..
:
∀ x0 x1 .
UPair
x0
x1
=
binunion
(
Sing
x0
)
(
Sing
x1
)
(proof)
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
e8bc0..
equip_adjoin_ordsucc
:
∀ x0 x1 x2 .
nIn
x2
x1
⟶
equip
x0
x1
⟶
equip
(
ordsucc
x0
)
(
binunion
x1
(
Sing
x2
)
)
Known
5169f..
equip_Sing_1
:
∀ x0 .
equip
(
Sing
x0
)
u1
Theorem
ced33..
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
equip
(
UPair
x0
x1
)
u2
(proof)
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Theorem
76c0f..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
∀ x4 :
ι → ο
.
x4
x0
⟶
x4
x1
⟶
x4
x2
⟶
x4
x3
(proof)
Theorem
1aece..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
∀ x5 :
ι → ο
.
x5
x0
⟶
x5
x1
⟶
x5
x2
⟶
x5
x3
⟶
x5
x4
(proof)
Theorem
a515c..
:
∀ x0 x1 x2 .
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
equip
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
u3
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
d9e1e..
:
∀ x0 x1 x2 x3 .
(
x0
=
x1
⟶
∀ x4 : ο .
x4
)
⟶
(
x0
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x0
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
equip
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
u4
(proof)
Definition
u9
:=
ordsucc
u8
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
bf767..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x2
x3
⟶
∀ x4 : ο .
(
x1
=
x2
⟶
x4
)
⟶
(
x1
=
x3
⟶
x4
)
⟶
(
x2
=
x3
⟶
x4
)
⟶
x4
(proof)
Theorem
0728d..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
∀ x5 : ο .
(
x1
=
x2
⟶
x5
)
⟶
(
x1
=
x3
⟶
x5
)
⟶
(
x1
=
x4
⟶
x5
)
⟶
(
x2
=
x3
⟶
x5
)
⟶
(
x2
=
x4
⟶
x5
)
⟶
(
x3
=
x4
⟶
x5
)
⟶
x5
(proof)
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
TwoRamseyProp
TwoRamseyProp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_3
nat_3
:
nat_p
3
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Known
TwoRamseyProp_3_3_6
TwoRamseyProp_3_3_6
:
TwoRamseyProp
3
3
6
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
48e0f..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
or
(
atleastp
x1
x0
)
(
atleastp
(
ordsucc
x0
)
x1
)
Known
nat_5
nat_5
:
nat_p
5
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_8
nat_8
:
nat_p
8
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
385ef..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
d03c6..
:
∀ x0 .
atleastp
u4
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x1
)
⟶
x1
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Theorem
e5c2b..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
x0
x1
x5
⟶
x2
)
⟶
x2
(proof)
Theorem
e041c..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
x0
x1
x5
⟶
not
(
x0
x3
x4
)
⟶
not
(
x0
x3
x5
)
⟶
not
(
x0
x4
x5
)
⟶
(
∀ x6 .
x6
∈
u9
⟶
x0
x1
x6
⟶
x6
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x3
)
x4
)
x5
)
⟶
x2
)
⟶
x2
(proof)
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Theorem
f1644..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
u9
⟶
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x4
⟶
x0
x1
x5
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x2
x5
)
⟶
not
(
x0
x4
x5
)
⟶
(
∀ x6 .
x6
∈
u9
⟶
x0
x1
x6
⟶
x6
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x4
)
x5
)
⟶
x3
)
⟶
x3
(proof)
Theorem
8455a..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x5
⟶
not
(
x0
x2
x5
)
⟶
not
(
x0
x3
x5
)
⟶
(
∀ x6 .
x6
∈
u9
⟶
x0
x1
x6
⟶
x6
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x5
)
⟶
x4
)
⟶
x4
(proof)
Theorem
c62d8..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
(
x1
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
∀ x5 .
x5
∈
u9
⟶
x0
x1
x5
⟶
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
(proof)