∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1) ⟶ not (∀ x1 : ο . (∀ x2 . and (x2 ⊆ u9) (and (equip u4 x2) (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x0 x3 x4))) ⟶ x1) ⟶ x1) ⟶ ∀ x1 . x1 ∈ u9 ⟶ ∀ x2 . x2 ∈ u9 ⟶ ∀ x3 . x3 ∈ u9 ⟶ ∀ x4 . x4 ∈ u9 ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x3) ⟶ not (x0 x2 x4) ⟶ not (x0 x3 x4) ⟶ ∀ x5 : ο . (x1 = x2 ⟶ x5) ⟶ (x1 = x3 ⟶ x5) ⟶ (x1 = x4 ⟶ x5) ⟶ (x2 = x3 ⟶ x5) ⟶ (x2 = x4 ⟶ x5) ⟶ (x3 = x4 ⟶ x5) ⟶ x5 |
|