Search for blocks/addresses/...
Proofgold Asset
asset id
b70f5e13c9cde7d23dd0bf7ae6db61b2c5964d1dfc0c026510b7d275e51152d7
asset hash
7db1e28c7c9c4836e4c38df3a58326ee759e774a52f7e62617faf5ded0cb1d65
bday / block
20943
tx
26009..
preasset
doc published by
Pr4zB..
Param
ap
ap
:
ι
→
ι
→
ι
Param
not
not
:
ο
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Known
3c6b1..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 x4 x5 x6 .
x0
x1
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
x0
(
ap
(
x7
x8
)
x9
)
)
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
ap
(
x7
x8
)
(
ap
(
x7
x8
)
x9
)
=
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
ap
(
x7
x8
)
x1
=
x2
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 x10 x11 x12 .
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x8
x9
x10
x11
x12
⟶
x8
x9
(
ap
(
x7
x9
)
x10
)
x11
(
ap
(
x7
x11
)
x12
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x1
x10
x11
)
⟶
not
(
x8
x9
x1
x12
x13
)
⟶
not
(
x8
x9
x1
x14
x15
)
⟶
not
(
x8
x9
x1
x16
x17
)
⟶
not
(
x8
x9
x1
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
)
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x2
x10
x11
)
⟶
not
(
x8
x9
x2
x12
x13
)
⟶
not
(
x8
x9
x2
x14
x15
)
⟶
not
(
x8
x9
x2
x16
x17
)
⟶
not
(
x8
x9
x2
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
Known
f8a5d..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 x4 x5 x6 .
x0
x1
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
x0
(
ap
(
x7
x8
)
x9
)
)
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
ap
(
x7
x8
)
(
ap
(
x7
x8
)
x9
)
=
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
ap
(
x7
x8
)
x1
=
x3
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 x10 x11 x12 .
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x8
x9
x10
x11
x12
⟶
x8
x9
(
ap
(
x7
x9
)
x10
)
x11
(
ap
(
x7
x11
)
x12
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x1
x10
x11
)
⟶
not
(
x8
x9
x1
x12
x13
)
⟶
not
(
x8
x9
x1
x14
x15
)
⟶
not
(
x8
x9
x1
x16
x17
)
⟶
not
(
x8
x9
x1
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
)
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x3
x10
x11
)
⟶
not
(
x8
x9
x3
x12
x13
)
⟶
not
(
x8
x9
x3
x14
x15
)
⟶
not
(
x8
x9
x3
x16
x17
)
⟶
not
(
x8
x9
x3
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
Known
37836..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 x4 x5 x6 .
x0
x1
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
x0
(
ap
(
x7
x8
)
x9
)
)
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
ap
(
x7
x8
)
(
ap
(
x7
x8
)
x9
)
=
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
ap
(
x7
x8
)
x1
=
x4
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 x10 x11 x12 .
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x8
x9
x10
x11
x12
⟶
x8
x9
(
ap
(
x7
x9
)
x10
)
x11
(
ap
(
x7
x11
)
x12
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x1
x10
x11
)
⟶
not
(
x8
x9
x1
x12
x13
)
⟶
not
(
x8
x9
x1
x14
x15
)
⟶
not
(
x8
x9
x1
x16
x17
)
⟶
not
(
x8
x9
x1
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
)
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x4
x10
x11
)
⟶
not
(
x8
x9
x4
x12
x13
)
⟶
not
(
x8
x9
x4
x14
x15
)
⟶
not
(
x8
x9
x4
x16
x17
)
⟶
not
(
x8
x9
x4
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
Theorem
54331..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
∀ x9 .
x1
x9
⟶
x8
x9
)
⟶
x0
x2
⟶
∀ x8 x9 x10 :
ι → ι
.
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x8
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x8
x11
)
(
ap
(
x8
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x8
x11
)
x2
=
x3
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x9
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x9
x11
)
(
ap
(
x9
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x9
x11
)
x2
=
x4
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x10
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x10
x11
)
(
ap
(
x10
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x10
x11
)
x2
=
x5
)
⟶
∀ x11 :
ι →
ι →
ι →
ι → ο
.
(
∀ x12 x13 x14 x15 .
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x11
x12
x13
x14
x15
⟶
x11
x12
(
ap
(
x8
x12
)
x13
)
x14
(
ap
(
x8
x14
)
x15
)
)
⟶
(
∀ x12 x13 x14 x15 .
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x11
x12
x13
x14
x15
⟶
x11
x12
(
ap
(
x9
x12
)
x13
)
x14
(
ap
(
x9
x14
)
x15
)
)
⟶
(
∀ x12 x13 x14 x15 .
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x11
x12
x13
x14
x15
⟶
x11
x12
(
ap
(
x10
x12
)
x13
)
x14
(
ap
(
x10
x14
)
x15
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
not
(
x11
x12
x2
x13
x14
)
⟶
not
(
x11
x12
x2
x15
x16
)
⟶
not
(
x11
x12
x2
x17
x18
)
⟶
not
(
x11
x12
x2
x19
x20
)
⟶
not
(
x11
x12
x2
x21
x22
)
⟶
not
(
x11
x13
x14
x15
x16
)
⟶
not
(
x11
x13
x14
x17
x18
)
⟶
not
(
x11
x13
x14
x19
x20
)
⟶
not
(
x11
x13
x14
x21
x22
)
⟶
not
(
x11
x15
x16
x17
x18
)
⟶
not
(
x11
x15
x16
x19
x20
)
⟶
not
(
x11
x15
x16
x21
x22
)
⟶
not
(
x11
x17
x18
x19
x20
)
⟶
not
(
x11
x17
x18
x21
x22
)
⟶
not
(
x11
x19
x20
x21
x22
)
⟶
False
)
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x1
x23
⟶
not
(
x11
x12
x23
x13
x14
)
⟶
not
(
x11
x12
x23
x15
x16
)
⟶
not
(
x11
x12
x23
x17
x18
)
⟶
not
(
x11
x12
x23
x19
x20
)
⟶
not
(
x11
x12
x23
x21
x22
)
⟶
not
(
x11
x13
x14
x15
x16
)
⟶
not
(
x11
x13
x14
x17
x18
)
⟶
not
(
x11
x13
x14
x19
x20
)
⟶
not
(
x11
x13
x14
x21
x22
)
⟶
not
(
x11
x15
x16
x17
x18
)
⟶
not
(
x11
x15
x16
x19
x20
)
⟶
not
(
x11
x15
x16
x21
x22
)
⟶
not
(
x11
x17
x18
x19
x20
)
⟶
not
(
x11
x17
x18
x21
x22
)
⟶
not
(
x11
x19
x20
x21
x22
)
⟶
False
(proof)