Search for blocks/addresses/...
Proofgold Asset
asset id
83bee2445c337576c2d2513279ed24bca3c583e67b6fd07d268c6fd4f635527e
asset hash
8bfe0f21ca291861e4f6557c8e516b824b85044bd5386d09d6b3ca5460f95bb5
bday / block
4838
tx
e9beb..
preasset
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
surj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
bij_surj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
surj
x0
x1
x2
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Param
48ef8..
:
ι
Param
e5b72..
:
ι
→
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Known
ac5c1..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
x1
x2
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Known
3daee..
:
∀ x0 x1 .
Subq
x1
x0
⟶
prim1
x1
(
e5b72..
x0
)
Known
d0a1f..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
prim1
x2
x0
Theorem
da671..
:
∀ x0 :
ι → ι
.
not
(
surj
48ef8..
(
e5b72..
48ef8..
)
x0
)
(proof)
Param
c2e41..
:
ι
→
ι
→
ο
Known
64d57..
:
∀ x0 x1 .
c2e41..
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Theorem
86fd0..
:
not
(
c2e41..
48ef8..
(
e5b72..
48ef8..
)
)
(proof)
Definition
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Param
a4c2a..
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Known
e951d..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
⟶
prim1
(
x2
x3
)
(
a4c2a..
x0
x1
x2
)
Known
932b3..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
(
a4c2a..
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Theorem
6ec25..
:
∀ x0 :
ι → ι
.
not
(
inj
(
e5b72..
48ef8..
)
48ef8..
x0
)
(proof)