Search for blocks/addresses/...

Proofgold Asset

asset id
84f0e44e95b67fc7c4d2e79c898f64c55af56b871beddbb67bd182a68a5982e7
asset hash
748ae460d973592be43b7e844ce1f9cf735a93b3a3f750ca534c609661b02074
bday / block
28250
tx
9ceb6..
preasset
doc published by PrQUS..
Param SNoSNo : ιο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param bbc71.. : ιιιιιιιιι
Definition 1eb0a.. := λ x0 . ∀ x1 : ο . (∀ x2 . and (SNo x2) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (∀ x15 : ο . (∀ x16 . and (SNo x16) (x0 = bbc71.. x2 x4 x6 x8 x10 x12 x14 x16)x15)x15)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem d5242.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x71eb0a.. (bbc71.. x0 x1 x2 x3 x4 x5 x6 x7) (proof)
Definition d4639.. := λ x0 : ι → ι . λ x1 . prim0 (λ x2 . and (SNo x2) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x1 = bbc71.. (x0 x1) x2 x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Theorem 26f49.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))∀ x1 . 1eb0a.. x1and (SNo (d4639.. x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x1 = bbc71.. (x0 x1) (d4639.. x0 x1) x3 x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2) (proof)
Theorem fd099.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))∀ x1 . 1eb0a.. x1SNo (d4639.. x0 x1) (proof)
Known babe8.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x1 = x9
Theorem 33b4a.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 x2 x3 x4 x5 x6 x7 x8 . SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8d4639.. x0 (bbc71.. x1 x2 x3 x4 x5 x6 x7 x8) = x2 (proof)
Definition 50208.. := λ x0 x1 : ι → ι . λ x2 . prim0 (λ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x2 = bbc71.. (x0 x2) (x1 x2) x3 x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))
Theorem 9b0e1.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))∀ x2 . 1eb0a.. x2and (SNo (50208.. x0 x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x2 = bbc71.. (x0 x2) (x1 x2) (50208.. x0 x1 x2) x4 x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3) (proof)
Theorem 1131a.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))∀ x2 . 1eb0a.. x2SNo (50208.. x0 x1 x2) (proof)
Known 6488e.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x2 = x10
Theorem 90339.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 x3 x4 x5 x6 x7 x8 x9 . SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x950208.. x0 x1 (bbc71.. x2 x3 x4 x5 x6 x7 x8 x9) = x4 (proof)
Definition 8d7df.. := λ x0 x1 x2 : ι → ι . λ x3 . prim0 (λ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x4 x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))
Theorem 0a376.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))∀ x3 . 1eb0a.. x3and (SNo (8d7df.. x0 x1 x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) (8d7df.. x0 x1 x2 x3) x5 x7 x9 x11)x10)x10)x8)x8)x6)x6)x4)x4) (proof)
Theorem 5e734.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))∀ x3 . 1eb0a.. x3SNo (8d7df.. x0 x1 x2 x3) (proof)
Known ad01a.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x3 = x11
Theorem 71a99.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 x4 x5 x6 x7 x8 x9 x10 . SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x108d7df.. x0 x1 x2 (bbc71.. x3 x4 x5 x6 x7 x8 x9 x10) = x6 (proof)
Definition 41ec1.. := λ x0 x1 x2 x3 : ι → ι . λ x4 . prim0 (λ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x5 x7 x9 x11)x10)x10)x8)x8)x6)x6))
Theorem 15adc.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))∀ x4 . 1eb0a.. x4and (SNo (41ec1.. x0 x1 x2 x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) (41ec1.. x0 x1 x2 x3 x4) x6 x8 x10)x9)x9)x7)x7)x5)x5) (proof)
Theorem af528.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))∀ x4 . 1eb0a.. x4SNo (41ec1.. x0 x1 x2 x3 x4) (proof)
Known f4559.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x4 = x12
Theorem 26f65.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 x5 x6 x7 x8 x9 x10 x11 . SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x1141ec1.. x0 x1 x2 x3 (bbc71.. x4 x5 x6 x7 x8 x9 x10 x11) = x8 (proof)
Definition 28f5a.. := λ x0 x1 x2 x3 x4 : ι → ι . λ x5 . prim0 (λ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x6 x8 x10)x9)x9)x7)x7))
Theorem baa4b.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))∀ x5 . 1eb0a.. x5and (SNo (28f5a.. x0 x1 x2 x3 x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) (28f5a.. x0 x1 x2 x3 x4 x5) x7 x9)x8)x8)x6)x6) (proof)
Theorem 69bbd.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))∀ x5 . 1eb0a.. x5SNo (28f5a.. x0 x1 x2 x3 x4 x5) (proof)
Known f56fc.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x5 = x13
Theorem 62fb0.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))(∀ x5 . 1eb0a.. x5SNo (x4 x5))∀ x5 x6 x7 x8 x9 x10 x11 x12 . SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x1228f5a.. x0 x1 x2 x3 x4 (bbc71.. x5 x6 x7 x8 x9 x10 x11 x12) = x10 (proof)
Definition 717b4.. := λ x0 x1 x2 x3 x4 x5 : ι → ι . λ x6 . prim0 (λ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (x6 = bbc71.. (x0 x6) (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6) x7 x9)x8)x8))
Theorem 42518.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))(∀ x5 . 1eb0a.. x5SNo (x4 x5))∀ x5 : ι → ι . (∀ x6 . 1eb0a.. x6and (SNo (x5 x6)) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (x6 = bbc71.. (x0 x6) (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6) x8 x10)x9)x9)x7)x7))∀ x6 . 1eb0a.. x6and (SNo (717b4.. x0 x1 x2 x3 x4 x5 x6)) (∀ x7 : ο . (∀ x8 . and (SNo x8) (x6 = bbc71.. (x0 x6) (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6) (717b4.. x0 x1 x2 x3 x4 x5 x6) x8)x7)x7) (proof)
Theorem 9599d.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))(∀ x5 . 1eb0a.. x5SNo (x4 x5))∀ x5 : ι → ι . (∀ x6 . 1eb0a.. x6and (SNo (x5 x6)) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (x6 = bbc71.. (x0 x6) (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6) x8 x10)x9)x9)x7)x7))∀ x6 . 1eb0a.. x6SNo (717b4.. x0 x1 x2 x3 x4 x5 x6) (proof)
Known 4a66b.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x6 = x14
Theorem c7d23.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))(∀ x5 . 1eb0a.. x5SNo (x4 x5))∀ x5 : ι → ι . (∀ x6 . 1eb0a.. x6and (SNo (x5 x6)) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (x6 = bbc71.. (x0 x6) (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6) x8 x10)x9)x9)x7)x7))(∀ x6 . 1eb0a.. x6SNo (x5 x6))∀ x6 x7 x8 x9 x10 x11 x12 x13 . SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13717b4.. x0 x1 x2 x3 x4 x5 (bbc71.. x6 x7 x8 x9 x10 x11 x12 x13) = x12 (proof)
Definition 053de.. := λ x0 x1 x2 x3 x4 x5 x6 : ι → ι . λ x7 . prim0 (λ x8 . and (SNo x8) (x7 = bbc71.. (x0 x7) (x1 x7) (x2 x7) (x3 x7) (x4 x7) (x5 x7) (x6 x7) x8))
Theorem 0b166.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))(∀ x5 . 1eb0a.. x5SNo (x4 x5))∀ x5 : ι → ι . (∀ x6 . 1eb0a.. x6and (SNo (x5 x6)) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (x6 = bbc71.. (x0 x6) (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6) x8 x10)x9)x9)x7)x7))(∀ x6 . 1eb0a.. x6SNo (x5 x6))∀ x6 : ι → ι . (∀ x7 . 1eb0a.. x7and (SNo (x6 x7)) (∀ x8 : ο . (∀ x9 . and (SNo x9) (x7 = bbc71.. (x0 x7) (x1 x7) (x2 x7) (x3 x7) (x4 x7) (x5 x7) (x6 x7) x9)x8)x8))∀ x7 . 1eb0a.. x7and (SNo (053de.. x0 x1 x2 x3 x4 x5 x6 x7)) (x7 = bbc71.. (x0 x7) (x1 x7) (x2 x7) (x3 x7) (x4 x7) (x5 x7) (x6 x7) (053de.. x0 x1 x2 x3 x4 x5 x6 x7)) (proof)
Theorem 0c70a.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))(∀ x5 . 1eb0a.. x5SNo (x4 x5))∀ x5 : ι → ι . (∀ x6 . 1eb0a.. x6and (SNo (x5 x6)) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (x6 = bbc71.. (x0 x6) (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6) x8 x10)x9)x9)x7)x7))(∀ x6 . 1eb0a.. x6SNo (x5 x6))∀ x6 : ι → ι . (∀ x7 . 1eb0a.. x7and (SNo (x6 x7)) (∀ x8 : ο . (∀ x9 . and (SNo x9) (x7 = bbc71.. (x0 x7) (x1 x7) (x2 x7) (x3 x7) (x4 x7) (x5 x7) (x6 x7) x9)x8)x8))∀ x7 . 1eb0a.. x7SNo (053de.. x0 x1 x2 x3 x4 x5 x6 x7) (proof)
Known 7c302.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x7 = x15
Theorem 48feb.. : ∀ x0 : ι → ι . (∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x1 = bbc71.. (x0 x1) x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))(∀ x1 . 1eb0a.. x1SNo (x0 x1))∀ x1 : ι → ι . (∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x2 = bbc71.. (x0 x2) (x1 x2) x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3))(∀ x2 . 1eb0a.. x2SNo (x1 x2))∀ x2 : ι → ι . (∀ x3 . 1eb0a.. x3and (SNo (x2 x3)) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (x3 = bbc71.. (x0 x3) (x1 x3) (x2 x3) x5 x7 x9 x11 x13)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4))(∀ x3 . 1eb0a.. x3SNo (x2 x3))∀ x3 : ι → ι . (∀ x4 . 1eb0a.. x4and (SNo (x3 x4)) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (x4 = bbc71.. (x0 x4) (x1 x4) (x2 x4) (x3 x4) x6 x8 x10 x12)x11)x11)x9)x9)x7)x7)x5)x5))(∀ x4 . 1eb0a.. x4SNo (x3 x4))∀ x4 : ι → ι . (∀ x5 . 1eb0a.. x5and (SNo (x4 x5)) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (x5 = bbc71.. (x0 x5) (x1 x5) (x2 x5) (x3 x5) (x4 x5) x7 x9 x11)x10)x10)x8)x8)x6)x6))(∀ x5 . 1eb0a.. x5SNo (x4 x5))∀ x5 : ι → ι . (∀ x6 . 1eb0a.. x6and (SNo (x5 x6)) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (x6 = bbc71.. (x0 x6) (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6) x8 x10)x9)x9)x7)x7))(∀ x6 . 1eb0a.. x6SNo (x5 x6))∀ x6 : ι → ι . (∀ x7 . 1eb0a.. x7and (SNo (x6 x7)) (∀ x8 : ο . (∀ x9 . and (SNo x9) (x7 = bbc71.. (x0 x7) (x1 x7) (x2 x7) (x3 x7) (x4 x7) (x5 x7) (x6 x7) x9)x8)x8))(∀ x7 . 1eb0a.. x7SNo (x6 x7))∀ x7 x8 x9 x10 x11 x12 x13 x14 . SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14053de.. x0 x1 x2 x3 x4 x5 x6 (bbc71.. x7 x8 x9 x10 x11 x12 x13 x14) = x14 (proof)
Definition 8dd2c.. := λ x0 . prim0 (λ x1 . and (SNo x1) (∀ x2 : ο . (∀ x3 . and (SNo x3) (∀ x4 : ο . (∀ x5 . and (SNo x5) (∀ x6 : ο . (∀ x7 . and (SNo x7) (∀ x8 : ο . (∀ x9 . and (SNo x9) (∀ x10 : ο . (∀ x11 . and (SNo x11) (∀ x12 : ο . (∀ x13 . and (SNo x13) (∀ x14 : ο . (∀ x15 . and (SNo x15) (x0 = bbc71.. x1 x3 x5 x7 x9 x11 x13 x15)x14)x14)x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2))
Theorem 340c0.. : ∀ x0 . 1eb0a.. x0and (SNo (8dd2c.. x0)) (∀ x1 : ο . (∀ x2 . and (SNo x2) (∀ x3 : ο . (∀ x4 . and (SNo x4) (∀ x5 : ο . (∀ x6 . and (SNo x6) (∀ x7 : ο . (∀ x8 . and (SNo x8) (∀ x9 : ο . (∀ x10 . and (SNo x10) (∀ x11 : ο . (∀ x12 . and (SNo x12) (∀ x13 : ο . (∀ x14 . and (SNo x14) (x0 = bbc71.. (8dd2c.. x0) x2 x4 x6 x8 x10 x12 x14)x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1) (proof)
Theorem 95571.. : ∀ x0 . 1eb0a.. x0SNo (8dd2c.. x0) (proof)
Known cca09.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15bbc71.. x0 x1 x2 x3 x4 x5 x6 x7 = bbc71.. x8 x9 x10 x11 x12 x13 x14 x15x0 = x8
Theorem 212d5.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x78dd2c.. (bbc71.. x0 x1 x2 x3 x4 x5 x6 x7) = x0 (proof)