Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRJn..
/
166cc..
PUe3N..
/
ac628..
vout
PrRJn..
/
62026..
9.90 bars
TMHfp..
/
bc053..
ownership of
212d5..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMK4Y..
/
b2ecc..
ownership of
7c2f0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWbW..
/
d17fb..
ownership of
95571..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLRB..
/
e4277..
ownership of
57b8e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXnR..
/
255c6..
ownership of
340c0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMc7q..
/
73130..
ownership of
14a4e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVpd..
/
5a868..
ownership of
48feb..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMK6q..
/
1a96a..
ownership of
2e86c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMcSR..
/
f6eb4..
ownership of
0c70a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPLh..
/
c1564..
ownership of
4271d..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRnz..
/
4b8dd..
ownership of
0b166..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJZs..
/
57740..
ownership of
d4d9f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRep..
/
1b57d..
ownership of
c7d23..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMc6d..
/
a04fe..
ownership of
5d3eb..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGmB..
/
20ed0..
ownership of
9599d..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJTk..
/
a7837..
ownership of
45530..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKFT..
/
c9f27..
ownership of
42518..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZga..
/
97e6a..
ownership of
026e3..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJzZ..
/
ae315..
ownership of
62fb0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRoR..
/
9b662..
ownership of
f7dd6..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZ8d..
/
82696..
ownership of
69bbd..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXVj..
/
41396..
ownership of
02fca..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRp5..
/
9aca3..
ownership of
baa4b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGBT..
/
7cd41..
ownership of
247af..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGQN..
/
04083..
ownership of
26f65..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMUE1..
/
124c1..
ownership of
ce924..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWkZ..
/
a4a26..
ownership of
af528..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTU4..
/
55d4d..
ownership of
0b170..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdXr..
/
34db6..
ownership of
15adc..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJne..
/
8cfe4..
ownership of
6885b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPBZ..
/
47abc..
ownership of
71a99..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHto..
/
89810..
ownership of
500fb..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTD5..
/
82f77..
ownership of
5e734..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMYZX..
/
299df..
ownership of
4d8ab..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFJW..
/
14700..
ownership of
0a376..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbjc..
/
1e61d..
ownership of
8229c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNbY..
/
a2eac..
ownership of
90339..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSnB..
/
6da3b..
ownership of
2d6ce..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXpL..
/
9f4c3..
ownership of
1131a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWoL..
/
3ac23..
ownership of
69127..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFnB..
/
ac3b7..
ownership of
9b0e1..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMG2i..
/
c16e1..
ownership of
95977..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGjF..
/
9e57f..
ownership of
33b4a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLFB..
/
508eb..
ownership of
b64a3..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdLn..
/
64efb..
ownership of
fd099..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMcfP..
/
bc673..
ownership of
90c9e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZEy..
/
57a82..
ownership of
26f49..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbad..
/
6634b..
ownership of
35aad..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMUif..
/
bacc5..
ownership of
8dd2c..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKWq..
/
a9b76..
ownership of
efba5..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGNc..
/
3162f..
ownership of
053de..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMN2B..
/
c49a0..
ownership of
170bf..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMcpM..
/
57153..
ownership of
717b4..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQgf..
/
fa000..
ownership of
579bf..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZGm..
/
e0f74..
ownership of
28f5a..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWf1..
/
ccde3..
ownership of
91cba..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNBC..
/
1d4a3..
ownership of
41ec1..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMM7L..
/
4b716..
ownership of
9166d..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdtw..
/
ea6ff..
ownership of
8d7df..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHai..
/
897b7..
ownership of
e75aa..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRtX..
/
9dc58..
ownership of
50208..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJZq..
/
014fb..
ownership of
60027..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMa8q..
/
ad440..
ownership of
d4639..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMT3L..
/
d48dd..
ownership of
01f77..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
PUY4m..
/
84f0e..
doc published by
PrQUS..
Param
SNo
SNo
:
ι
→
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
bbc71..
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Definition
1eb0a..
:=
λ x0 .
∃ x1 .
and
(
SNo
x1
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
∃ x15 .
and
(
SNo
x15
)
(
x0
=
bbc71..
x1
x3
x5
x7
x9
x11
x13
x15
)
)
)
)
)
)
)
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
d5242..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
1eb0a..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
...
Definition
d4639..
:=
λ x0 :
ι → ι
.
λ x1 .
prim0
(
λ x2 .
and
(
SNo
x2
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∃ x1 .
x0
x1
)
⟶
x0
(
prim0
x0
)
Theorem
26f49..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
d4639..
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x1
=
bbc71..
(
x0
x1
)
(
d4639..
x0
x1
)
x2
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
...
Theorem
fd099..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
∀ x1 .
1eb0a..
x1
⟶
SNo
(
d4639..
x0
x1
)
...
Known
babe8..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x1
=
x9
Theorem
33b4a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 x2 x3 x4 x5 x6 x7 x8 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
d4639..
x0
(
bbc71..
x1
x2
x3
x4
x5
x6
x7
x8
)
=
x2
...
Definition
50208..
:=
λ x0 x1 :
ι → ι
.
λ x2 .
prim0
(
λ x3 .
and
(
SNo
x3
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
Theorem
9b0e1..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
50208..
x0
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
(
50208..
x0
x1
x2
)
x3
x5
x7
x9
x11
)
)
)
)
)
)
...
Theorem
1131a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
∀ x2 .
1eb0a..
x2
⟶
SNo
(
50208..
x0
x1
x2
)
...
Known
6488e..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x2
=
x10
Theorem
90339..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
50208..
x0
x1
(
bbc71..
x2
x3
x4
x5
x6
x7
x8
x9
)
=
x4
...
Definition
8d7df..
:=
λ x0 x1 x2 :
ι → ι
.
λ x3 .
prim0
(
λ x4 .
and
(
SNo
x4
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x5
x7
x9
x11
)
)
)
)
)
)
Theorem
0a376..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
8d7df..
x0
x1
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
(
8d7df..
x0
x1
x2
x3
)
x4
x6
x8
x10
)
)
)
)
)
...
Theorem
5e734..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
∀ x3 .
1eb0a..
x3
⟶
SNo
(
8d7df..
x0
x1
x2
x3
)
...
Known
ad01a..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x3
=
x11
Theorem
71a99..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 x4 x5 x6 x7 x8 x9 x10 .
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
8d7df..
x0
x1
x2
(
bbc71..
x3
x4
x5
x6
x7
x8
x9
x10
)
=
x6
...
Definition
41ec1..
:=
λ x0 x1 x2 x3 :
ι → ι
.
λ x4 .
prim0
(
λ x5 .
and
(
SNo
x5
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x6
x8
x10
)
)
)
)
)
Theorem
15adc..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
41ec1..
x0
x1
x2
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
(
41ec1..
x0
x1
x2
x3
x4
)
x5
x7
x9
)
)
)
)
...
Theorem
af528..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
∀ x4 .
1eb0a..
x4
⟶
SNo
(
41ec1..
x0
x1
x2
x3
x4
)
...
Known
f4559..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x4
=
x12
Theorem
26f65..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
41ec1..
x0
x1
x2
x3
(
bbc71..
x4
x5
x6
x7
x8
x9
x10
x11
)
=
x8
...
Definition
28f5a..
:=
λ x0 x1 x2 x3 x4 :
ι → ι
.
λ x5 .
prim0
(
λ x6 .
and
(
SNo
x6
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x7
x9
)
)
)
)
Theorem
baa4b..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
28f5a..
x0
x1
x2
x3
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
(
28f5a..
x0
x1
x2
x3
x4
x5
)
x6
x8
)
)
)
...
Theorem
69bbd..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
∀ x5 .
1eb0a..
x5
⟶
SNo
(
28f5a..
x0
x1
x2
x3
x4
x5
)
...
Known
f56fc..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x5
=
x13
Theorem
62fb0..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 x6 x7 x8 x9 x10 x11 x12 .
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
28f5a..
x0
x1
x2
x3
x4
(
bbc71..
x5
x6
x7
x8
x9
x10
x11
x12
)
=
x10
...
Definition
717b4..
:=
λ x0 x1 x2 x3 x4 x5 :
ι → ι
.
λ x6 .
prim0
(
λ x7 .
and
(
SNo
x7
)
(
∃ x8 .
and
(
SNo
x8
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x8
)
)
)
Theorem
42518..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
x7
)
)
...
Theorem
9599d..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
∀ x6 .
1eb0a..
x6
⟶
SNo
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
...
Known
4a66b..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x6
=
x14
Theorem
c7d23..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
717b4..
x0
x1
x2
x3
x4
x5
(
bbc71..
x6
x7
x8
x9
x10
x11
x12
x13
)
=
x12
...
Definition
053de..
:=
λ x0 x1 x2 x3 x4 x5 x6 :
ι → ι
.
λ x7 .
prim0
(
λ x8 .
and
(
SNo
x8
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x8
)
)
Theorem
0b166..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∃ x8 .
and
(
SNo
x8
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x8
)
)
)
⟶
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
)
...
Theorem
0c70a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∃ x8 .
and
(
SNo
x8
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x8
)
)
)
⟶
∀ x7 .
1eb0a..
x7
⟶
SNo
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
...
Known
7c302..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x7
=
x15
Theorem
48feb..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∃ x8 .
and
(
SNo
x8
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x8
)
)
)
⟶
(
∀ x7 .
1eb0a..
x7
⟶
SNo
(
x6
x7
)
)
⟶
∀ x7 x8 x9 x10 x11 x12 x13 x14 .
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
053de..
x0
x1
x2
x3
x4
x5
x6
(
bbc71..
x7
x8
x9
x10
x11
x12
x13
x14
)
=
x14
...
Definition
8dd2c..
:=
λ x0 .
prim0
(
λ x1 .
and
(
SNo
x1
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x0
=
bbc71..
x1
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
Theorem
340c0..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
8dd2c..
x0
)
)
(
∃ x1 .
and
(
SNo
x1
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
x1
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
...
Theorem
95571..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
8dd2c..
x0
)
...
Known
cca09..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x0
=
x8
Theorem
212d5..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
8dd2c..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x0
...