Search for blocks/addresses/...
Proofgold Asset
asset id
85a5bc409e5425f66176a81ea7c5438fffe36bca0df0d0a10fbf320d1b880973
asset hash
ab5ab3f507d0e8afd901c25fd9b1182933df73674332a7d7a4d95c3d85328cd5
bday / block
28513
tx
5c6b2..
preasset
doc published by
PrQUS..
Param
HSNo
HSNo
:
ι
→
ο
Param
nIn
nIn
:
ι
→
ι
→
ο
Param
Sing
Sing
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
ordinal
ordinal
:
ι
→
ο
Param
and
and
:
ο
→
ο
→
ο
Definition
ExtendedSNoElt_
ExtendedSNoElt_
:=
λ x0 x1 .
∀ x2 .
x2
∈
prim3
x1
⟶
or
(
ordinal
x2
)
(
∃ x3 .
and
(
x3
∈
x0
)
(
x2
=
Sing
x3
)
)
Known
Sing_nat_fresh_extension
Sing_nat_fresh_extension
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 .
ExtendedSNoElt_
x0
x1
⟶
∀ x2 .
x2
∈
x1
⟶
nIn
(
Sing
x0
)
x2
Known
nat_4
nat_4
:
nat_p
4
Known
In_1_4
In_1_4
:
1
∈
4
Known
HSNo_ExtendedSNoElt_4
HSNo_ExtendedSNoElt_4
:
∀ x0 .
HSNo
x0
⟶
ExtendedSNoElt_
4
x0
Theorem
octonion_tag_fresh
octonion_tag_fresh
:
∀ x0 .
HSNo
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nIn
(
Sing
4
)
x1
...
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Definition
pair_tag
pair_tag
:=
λ x0 x1 x2 .
binunion
x1
{
SetAdjoin
x3
x0
|x3 ∈
x2
}
Definition
HSNo_pair
HSNo_pair
:=
pair_tag
(
Sing
4
)
Known
pair_tag_0
pair_tag_0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
pair_tag
x0
x2
0
=
x2
Theorem
HSNo_pair_0
HSNo_pair_0
:
∀ x0 .
HSNo_pair
x0
0
=
x0
...
Known
pair_tag_prop_1
pair_tag_prop_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
x1
x4
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x2
=
x4
Theorem
HSNo_pair_prop_1
HSNo_pair_prop_1
:
∀ x0 x1 x2 x3 .
HSNo
x0
⟶
HSNo
x2
⟶
HSNo_pair
x0
x1
=
HSNo_pair
x2
x3
⟶
x0
=
x2
...
Known
pair_tag_prop_2
pair_tag_prop_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x3
=
x5
Theorem
HSNo_pair_prop_2
HSNo_pair_prop_2
:
∀ x0 x1 x2 x3 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
HSNo
x3
⟶
HSNo_pair
x0
x1
=
HSNo_pair
x2
x3
⟶
x1
=
x3
...
Param
CD_carr
CD_carr
:
ι
→
(
ι
→
ο
) →
ι
→
ο
Definition
OSNo
OSNo
:=
CD_carr
(
Sing
4
)
HSNo
Known
CD_carr_I
CD_carr_I
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_carr
x0
x1
(
pair_tag
x0
x2
x3
)
Theorem
OSNo_I
OSNo_I
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo
(
HSNo_pair
x0
x1
)
...
Known
CD_carr_E
CD_carr_E
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x2
=
pair_tag
x0
x4
x5
⟶
x3
(
pair_tag
x0
x4
x5
)
)
⟶
x3
x2
Theorem
OSNo_E
OSNo_E
:
∀ x0 .
OSNo
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
HSNo
x2
⟶
HSNo
x3
⟶
x0
=
HSNo_pair
x2
x3
⟶
x1
(
HSNo_pair
x2
x3
)
)
⟶
x1
x0
...
Known
CD_carr_0ext
CD_carr_0ext
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_carr
x0
x1
x2
Known
HSNo_0
HSNo_0
:
HSNo
0
Theorem
HSNo_OSNo
HSNo_OSNo
:
∀ x0 .
HSNo
x0
⟶
OSNo
x0
...
Theorem
OSNo_0
OSNo_0
:
OSNo
0
...
Known
HSNo_1
HSNo_1
:
HSNo
1
Theorem
OSNo_1
OSNo_1
:
OSNo
1
...
Known
UnionE_impred
UnionE_impred
:
∀ x0 x1 .
x1
∈
prim3
x0
⟶
∀ x2 : ο .
(
∀ x3 .
x1
∈
x3
⟶
x3
∈
x0
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Param
Subq
Subq
:
ι
→
ι
→
ο
Known
extension_SNoElt_mon
extension_SNoElt_mon
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 .
ExtendedSNoElt_
x0
x2
⟶
ExtendedSNoElt_
x1
x2
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
UnionI
UnionI
:
∀ x0 x1 x2 .
x1
∈
x2
⟶
x2
∈
x0
⟶
x1
∈
prim3
x0
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
In_4_5
In_4_5
:
4
∈
5
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Theorem
OSNo_ExtendedSNoElt_5
OSNo_ExtendedSNoElt_5
:
∀ x0 .
OSNo
x0
⟶
ExtendedSNoElt_
5
x0
...
Param
CD_proj0
CD_proj0
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Definition
OSNo_proj0
OSNo_proj0
:=
CD_proj0
(
Sing
4
)
HSNo
Param
CD_proj1
CD_proj1
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Definition
OSNo_proj1
OSNo_proj1
:=
CD_proj1
(
Sing
4
)
HSNo
Known
CD_proj0_1
CD_proj0_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
and
(
x1
(
CD_proj0
x0
x1
x2
)
)
(
∃ x3 .
and
(
x1
x3
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
x3
)
)
Theorem
OSNo_proj0_1
OSNo_proj0_1
:
∀ x0 .
OSNo
x0
⟶
and
(
HSNo
(
OSNo_proj0
x0
)
)
(
∃ x1 .
and
(
HSNo
x1
)
(
x0
=
HSNo_pair
(
OSNo_proj0
x0
)
x1
)
)
...
Known
CD_proj0_2
CD_proj0_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_proj0
x0
x1
(
pair_tag
x0
x2
x3
)
=
x2
Theorem
OSNo_proj0_2
OSNo_proj0_2
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo_proj0
(
HSNo_pair
x0
x1
)
=
x0
...
Known
CD_proj1_1
CD_proj1_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
and
(
x1
(
CD_proj1
x0
x1
x2
)
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
(
CD_proj1
x0
x1
x2
)
)
Theorem
OSNo_proj1_1
OSNo_proj1_1
:
∀ x0 .
OSNo
x0
⟶
and
(
HSNo
(
OSNo_proj1
x0
)
)
(
x0
=
HSNo_pair
(
OSNo_proj0
x0
)
(
OSNo_proj1
x0
)
)
...
Known
CD_proj1_2
CD_proj1_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_proj1
x0
x1
(
pair_tag
x0
x2
x3
)
=
x3
Theorem
OSNo_proj1_2
OSNo_proj1_2
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo_proj1
(
HSNo_pair
x0
x1
)
=
x1
...
Known
CD_proj0R
CD_proj0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x1
(
CD_proj0
x0
x1
x2
)
Theorem
OSNo_proj0R
OSNo_proj0R
:
∀ x0 .
OSNo
x0
⟶
HSNo
(
OSNo_proj0
x0
)
...
Known
CD_proj1R
CD_proj1R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x1
(
CD_proj1
x0
x1
x2
)
Theorem
OSNo_proj1R
OSNo_proj1R
:
∀ x0 .
OSNo
x0
⟶
HSNo
(
OSNo_proj1
x0
)
...
Known
CD_proj0proj1_eta
CD_proj0proj1_eta
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
(
CD_proj1
x0
x1
x2
)
Theorem
OSNo_proj0p1
OSNo_proj0p1
:
∀ x0 .
OSNo
x0
⟶
x0
=
HSNo_pair
(
OSNo_proj0
x0
)
(
OSNo_proj1
x0
)
...
Known
CD_proj0proj1_split
CD_proj0proj1_split
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
CD_carr
x0
x1
x2
⟶
CD_carr
x0
x1
x3
⟶
CD_proj0
x0
x1
x2
=
CD_proj0
x0
x1
x3
⟶
CD_proj1
x0
x1
x2
=
CD_proj1
x0
x1
x3
⟶
x2
=
x3
Theorem
OSNo_proj0proj1_split
OSNo_proj0proj1_split
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj0
x0
=
OSNo_proj0
x1
⟶
OSNo_proj1
x0
=
OSNo_proj1
x1
⟶
x0
=
x1
...
Param
HSNoLev
HSNoLev
:
ι
→
ι
Definition
OSNoLev
OSNoLev
:=
λ x0 .
binunion
(
HSNoLev
(
OSNo_proj0
x0
)
)
(
HSNoLev
(
OSNo_proj1
x0
)
)
Known
ordinal_binunion
ordinal_binunion
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binunion
x0
x1
)
Known
HSNoLev_ordinal
HSNoLev_ordinal
:
∀ x0 .
HSNo
x0
⟶
ordinal
(
HSNoLev
x0
)
Theorem
OSNoLev_ordinal
OSNoLev_ordinal
:
∀ x0 .
OSNo
x0
⟶
ordinal
(
OSNoLev
x0
)
...
Param
CD_minus
CD_minus
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
→
ι
Param
minus_HSNo
minus_HSNo
:
ι
→
ι
Definition
minus_OSNo
minus_OSNo
:=
CD_minus
(
Sing
4
)
HSNo
minus_HSNo
Param
CD_conj
CD_conj
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Param
conj_HSNo
conj_HSNo
:
ι
→
ι
Definition
conj_OSNo
conj_OSNo
:=
CD_conj
(
Sing
4
)
HSNo
minus_HSNo
conj_HSNo
Param
CD_add
CD_add
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Param
add_HSNo
add_HSNo
:
ι
→
ι
→
ι
Definition
add_OSNo
add_OSNo
:=
CD_add
(
Sing
4
)
HSNo
add_HSNo
Param
CD_mul
CD_mul
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Param
mul_HSNo
mul_HSNo
:
ι
→
ι
→
ι
Definition
mul_OSNo
mul_OSNo
:=
CD_mul
(
Sing
4
)
HSNo
minus_HSNo
conj_HSNo
add_HSNo
mul_HSNo
Param
CD_exp_nat
CD_exp_nat
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Definition
exp_OSNo_nat
exp_OSNo_nat
:=
CD_exp_nat
(
Sing
4
)
HSNo
minus_HSNo
conj_HSNo
add_HSNo
mul_HSNo
Known
CD_minus_CD
CD_minus_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
(
CD_minus
x0
x1
x2
x3
)
Known
HSNo_minus_HSNo
HSNo_minus_HSNo
:
∀ x0 .
HSNo
x0
⟶
HSNo
(
minus_HSNo
x0
)
Theorem
OSNo_minus_OSNo
OSNo_minus_OSNo
:
∀ x0 .
OSNo
x0
⟶
OSNo
(
minus_OSNo
x0
)
...
Known
CD_minus_proj0
CD_minus_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_proj0
x0
x1
(
CD_minus
x0
x1
x2
x3
)
=
x2
(
CD_proj0
x0
x1
x3
)
Theorem
minus_OSNo_proj0
minus_OSNo_proj0
:
∀ x0 .
OSNo
x0
⟶
OSNo_proj0
(
minus_OSNo
x0
)
=
minus_HSNo
(
OSNo_proj0
x0
)
...
Known
CD_minus_proj1
CD_minus_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_proj1
x0
x1
(
CD_minus
x0
x1
x2
x3
)
=
x2
(
CD_proj1
x0
x1
x3
)
Theorem
minus_OSNo_proj1
minus_OSNo_proj1
:
∀ x0 .
OSNo
x0
⟶
OSNo_proj1
(
minus_OSNo
x0
)
=
minus_HSNo
(
OSNo_proj1
x0
)
...
Known
CD_conj_CD
CD_conj_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
Known
HSNo_conj_HSNo
HSNo_conj_HSNo
:
∀ x0 .
HSNo
x0
⟶
HSNo
(
conj_HSNo
x0
)
Theorem
OSNo_conj_OSNo
OSNo_conj_OSNo
:
∀ x0 .
OSNo
x0
⟶
OSNo
(
conj_OSNo
x0
)
...
Known
CD_conj_proj0
CD_conj_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_proj0
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
=
x3
(
CD_proj0
x0
x1
x4
)
Theorem
conj_OSNo_proj0
conj_OSNo_proj0
:
∀ x0 .
OSNo
x0
⟶
OSNo_proj0
(
conj_OSNo
x0
)
=
conj_HSNo
(
OSNo_proj0
x0
)
...
Known
CD_conj_proj1
CD_conj_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_proj1
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj1
x0
x1
x4
)
Theorem
conj_OSNo_proj1
conj_OSNo_proj1
:
∀ x0 .
OSNo
x0
⟶
OSNo_proj1
(
conj_OSNo
x0
)
=
minus_HSNo
(
OSNo_proj1
x0
)
...
Known
CD_add_CD
CD_add_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
Known
HSNo_add_HSNo
HSNo_add_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
(
add_HSNo
x0
x1
)
Theorem
OSNo_add_OSNo
OSNo_add_OSNo
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo
(
add_OSNo
x0
x1
)
...
Known
CD_add_proj0
CD_add_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_proj0
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj0
x0
x1
x3
)
(
CD_proj0
x0
x1
x4
)
Theorem
add_OSNo_proj0
add_OSNo_proj0
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj0
(
add_OSNo
x0
x1
)
=
add_HSNo
(
OSNo_proj0
x0
)
(
OSNo_proj0
x1
)
...
Known
CD_add_proj1
CD_add_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_proj1
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj1
x0
x1
x3
)
(
CD_proj1
x0
x1
x4
)
Theorem
add_OSNo_proj1
add_OSNo_proj1
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj1
(
add_OSNo
x0
x1
)
=
add_HSNo
(
OSNo_proj1
x0
)
(
OSNo_proj1
x1
)
...
Known
CD_mul_CD
CD_mul_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Known
HSNo_mul_HSNo
HSNo_mul_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
(
mul_HSNo
x0
x1
)
Theorem
OSNo_mul_OSNo
OSNo_mul_OSNo
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo
(
mul_OSNo
x0
x1
)
...
Known
CD_mul_proj0
CD_mul_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_proj0
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(
x5
(
CD_proj0
x0
x1
x6
)
(
CD_proj0
x0
x1
x7
)
)
(
x2
(
x5
(
x3
(
CD_proj1
x0
x1
x7
)
)
(
CD_proj1
x0
x1
x6
)
)
)
Theorem
mul_OSNo_proj0
mul_OSNo_proj0
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj0
(
mul_OSNo
x0
x1
)
=
add_HSNo
(
mul_HSNo
(
OSNo_proj0
x0
)
(
OSNo_proj0
x1
)
)
(
minus_HSNo
(
mul_HSNo
(
conj_HSNo
(
OSNo_proj1
x1
)
)
(
OSNo_proj1
x0
)
)
)
...
Known
CD_mul_proj1
CD_mul_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_proj1
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(
x5
(
CD_proj1
x0
x1
x7
)
(
CD_proj0
x0
x1
x6
)
)
(
x5
(
CD_proj1
x0
x1
x6
)
(
x3
(
CD_proj0
x0
x1
x7
)
)
)
Theorem
mul_OSNo_proj1
mul_OSNo_proj1
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj1
(
mul_OSNo
x0
x1
)
=
add_HSNo
(
mul_HSNo
(
OSNo_proj1
x1
)
(
OSNo_proj0
x0
)
)
(
mul_HSNo
(
OSNo_proj1
x0
)
(
conj_HSNo
(
OSNo_proj0
x1
)
)
)
...
Known
CD_proj0_F
CD_proj0_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_proj0
x0
x1
x2
=
x2
Theorem
HSNo_OSNo_proj0
HSNo_OSNo_proj0
:
∀ x0 .
HSNo
x0
⟶
OSNo_proj0
x0
=
x0
...
Known
CD_proj1_F
CD_proj1_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_proj1
x0
x1
x2
=
0
Theorem
HSNo_OSNo_proj1
HSNo_OSNo_proj1
:
∀ x0 .
HSNo
x0
⟶
OSNo_proj1
x0
=
0
...
Theorem
OSNo_p0_0
OSNo_p0_0
:
OSNo_proj0
0
=
0
...
Theorem
OSNo_p1_0
OSNo_p1_0
:
OSNo_proj1
0
=
0
...
Theorem
OSNo_p0_1
OSNo_p0_1
:
OSNo_proj0
1
=
1
...
Theorem
OSNo_p1_1
OSNo_p1_1
:
OSNo_proj1
1
=
0
...
Param
Complex_i
Complex_i
:
ι
Known
HSNo_Complex_i
HSNo_Complex_i
:
HSNo
Complex_i
Theorem
OSNo_p0_i
OSNo_p0_i
:
OSNo_proj0
Complex_i
=
Complex_i
...
Theorem
OSNo_p1_i
OSNo_p1_i
:
OSNo_proj1
Complex_i
=
0
...
Param
Quaternion_j
Quaternion_j
:
ι
Known
HSNo_Quaternion_j
HSNo_Quaternion_j
:
HSNo
Quaternion_j
Theorem
OSNo_p0_j
OSNo_p0_j
:
OSNo_proj0
Quaternion_j
=
Quaternion_j
...
Theorem
OSNo_p1_j
OSNo_p1_j
:
OSNo_proj1
Quaternion_j
=
0
...
Param
Quaternion_k
Quaternion_k
:
ι
Known
HSNo_Quaternion_k
HSNo_Quaternion_k
:
HSNo
Quaternion_k
Theorem
OSNo_p0_k
OSNo_p0_k
:
OSNo_proj0
Quaternion_k
=
Quaternion_k
...
Theorem
OSNo_p1_k
OSNo_p1_k
:
OSNo_proj1
Quaternion_k
=
0
...
Known
CD_minus_F_eq
CD_minus_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
∀ x3 .
x1
x3
⟶
CD_minus
x0
x1
x2
x3
=
x2
x3
Known
minus_HSNo_0
minus_HSNo_0
:
minus_HSNo
0
=
0
Theorem
minus_OSNo_minus_HSNo
minus_OSNo_minus_HSNo
:
∀ x0 .
HSNo
x0
⟶
minus_OSNo
x0
=
minus_HSNo
x0
...
Theorem
minus_OSNo_0
minus_OSNo_0
:
minus_OSNo
0
=
0
...
Known
CD_conj_F_eq
CD_conj_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
∀ x3 :
ι → ι
.
∀ x4 .
x1
x4
⟶
CD_conj
x0
x1
x2
x3
x4
=
x3
x4
Theorem
conj_OSNo_conj_HSNo
conj_OSNo_conj_HSNo
:
∀ x0 .
HSNo
x0
⟶
conj_OSNo
x0
=
conj_HSNo
x0
...
Known
conj_HSNo_0
conj_HSNo_0
:
conj_HSNo
0
=
0
Theorem
conj_OSNo_0
conj_OSNo_0
:
conj_OSNo
0
=
0
...
Known
conj_HSNo_1
conj_HSNo_1
:
conj_HSNo
1
=
1
Theorem
conj_OSNo_1
conj_OSNo_1
:
conj_OSNo
1
=
1
...
Known
CD_add_F_eq
CD_add_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
x2
0
0
=
0
⟶
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
CD_add
x0
x1
x2
x3
x4
=
x2
x3
x4
Known
add_HSNo_0L
add_HSNo_0L
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
0
x0
=
x0
Theorem
add_OSNo_add_HSNo
add_OSNo_add_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
add_OSNo
x0
x1
=
add_HSNo
x0
x1
...
Known
CD_mul_F_eq
CD_mul_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
x2
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
=
x5
x6
x7
Known
add_HSNo_0R
add_HSNo_0R
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
x0
0
=
x0
Known
mul_HSNo_0L
mul_HSNo_0L
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
0
x0
=
0
Known
mul_HSNo_0R
mul_HSNo_0R
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
x0
0
=
0
Theorem
mul_OSNo_mul_HSNo
mul_OSNo_mul_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
mul_OSNo
x0
x1
=
mul_HSNo
x0
x1
...
Known
CD_minus_invol
CD_minus_invol
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x2
x3
)
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_minus
x0
x1
x2
(
CD_minus
x0
x1
x2
x3
)
=
x3
Known
minus_HSNo_invol
minus_HSNo_invol
:
∀ x0 .
HSNo
x0
⟶
minus_HSNo
(
minus_HSNo
x0
)
=
x0
Theorem
minus_OSNo_invol
minus_OSNo_invol
:
∀ x0 .
OSNo
x0
⟶
minus_OSNo
(
minus_OSNo
x0
)
=
x0
...
Known
CD_conj_invol
CD_conj_invol
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x2
(
x2
x4
)
=
x4
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x3
x4
)
=
x4
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_conj
x0
x1
x2
x3
(
CD_conj
x0
x1
x2
x3
x4
)
=
x4
Known
conj_HSNo_invol
conj_HSNo_invol
:
∀ x0 .
HSNo
x0
⟶
conj_HSNo
(
conj_HSNo
x0
)
=
x0
Theorem
conj_OSNo_invol
conj_OSNo_invol
:
∀ x0 .
OSNo
x0
⟶
conj_OSNo
(
conj_OSNo
x0
)
=
x0
...
Known
CD_conj_minus
CD_conj_minus
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x2
x4
)
=
x2
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_conj
x0
x1
x2
x3
(
CD_minus
x0
x1
x2
x4
)
=
CD_minus
x0
x1
x2
(
CD_conj
x0
x1
x2
x3
x4
)
Known
conj_minus_HSNo
conj_minus_HSNo
:
∀ x0 .
HSNo
x0
⟶
conj_HSNo
(
minus_HSNo
x0
)
=
minus_HSNo
(
conj_HSNo
x0
)
Theorem
conj_minus_OSNo
conj_minus_OSNo
:
∀ x0 .
OSNo
x0
⟶
conj_OSNo
(
minus_OSNo
x0
)
=
minus_OSNo
(
conj_OSNo
x0
)
...
Known
CD_minus_add
CD_minus_add
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x1
(
x3
x4
x5
)
)
⟶
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x2
(
x3
x4
x5
)
=
x3
(
x2
x4
)
(
x2
x5
)
)
⟶
∀ x4 x5 .
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
x5
⟶
CD_minus
x0
x1
x2
(
CD_add
x0
x1
x3
x4
x5
)
=
CD_add
x0
x1
x3
(
CD_minus
x0
x1
x2
x4
)
(
CD_minus
x0
x1
x2
x5
)
Known
minus_add_HSNo
minus_add_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
minus_HSNo
(
add_HSNo
x0
x1
)
=
add_HSNo
(
minus_HSNo
x0
)
(
minus_HSNo
x1
)
Theorem
minus_add_OSNo
minus_add_OSNo
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
minus_OSNo
(
add_OSNo
x0
x1
)
=
add_OSNo
(
minus_OSNo
x0
)
(
minus_OSNo
x1
)
...
Known
CD_conj_add
CD_conj_add
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x1
x5
⟶
x1
(
x2
x5
)
)
⟶
(
∀ x5 .
x1
x5
⟶
x1
(
x3
x5
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x1
(
x4
x5
x6
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x2
(
x4
x5
x6
)
=
x4
(
x2
x5
)
(
x2
x6
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x3
(
x4
x5
x6
)
=
x4
(
x3
x5
)
(
x3
x6
)
)
⟶
∀ x5 x6 .
CD_carr
x0
x1
x5
⟶
CD_carr
x0
x1
x6
⟶
CD_conj
x0
x1
x2
x3
(
CD_add
x0
x1
x4
x5
x6
)
=
CD_add
x0
x1
x4
(
CD_conj
x0
x1
x2
x3
x5
)
(
CD_conj
x0
x1
x2
x3
x6
)
Known
conj_add_HSNo
conj_add_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
conj_HSNo
(
add_HSNo
x0
x1
)
=
add_HSNo
(
conj_HSNo
x0
)
(
conj_HSNo
x1
)
Theorem
conj_add_OSNo
conj_add_OSNo
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
conj_OSNo
(
add_OSNo
x0
x1
)
=
add_OSNo
(
conj_OSNo
x0
)
(
conj_OSNo
x1
)
...
Known
CD_add_com
CD_add_com
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x2
x3
x4
=
x2
x4
x3
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x2
x3
x4
=
CD_add
x0
x1
x2
x4
x3
Known
add_HSNo_com
add_HSNo_com
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
add_HSNo
x0
x1
=
add_HSNo
x1
x0
Theorem
add_OSNo_com
add_OSNo_com
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
add_OSNo
x0
x1
=
add_OSNo
x1
x0
...
Known
CD_add_assoc
CD_add_assoc
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
x2
(
x2
x3
x4
)
x5
=
x2
x3
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
x5
⟶
CD_add
x0
x1
x2
(
CD_add
x0
x1
x2
x3
x4
)
x5
=
CD_add
x0
x1
x2
x3
(
CD_add
x0
x1
x2
x4
x5
)
Known
add_HSNo_assoc
add_HSNo_assoc
:
∀ x0 x1 x2 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
add_HSNo
(
add_HSNo
x0
x1
)
x2
=
add_HSNo
x0
(
add_HSNo
x1
x2
)
Theorem
add_OSNo_assoc
add_OSNo_assoc
:
∀ x0 x1 x2 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo
x2
⟶
add_OSNo
(
add_OSNo
x0
x1
)
x2
=
add_OSNo
x0
(
add_OSNo
x1
x2
)
...
Known
CD_add_0L
CD_add_0L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x3 .
x1
x3
⟶
x2
0
x3
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_add
x0
x1
x2
0
x3
=
x3
Theorem
add_OSNo_0L
add_OSNo_0L
:
∀ x0 .
OSNo
x0
⟶
add_OSNo
0
x0
=
x0
...
Known
CD_add_0R
CD_add_0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x3 .
x1
x3
⟶
x2
x3
0
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_add
x0
x1
x2
x3
0
=
x3
Theorem
add_OSNo_0R
add_OSNo_0R
:
∀ x0 .
OSNo
x0
⟶
add_OSNo
x0
0
=
x0
...
Known
CD_add_minus_linv
CD_add_minus_linv
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x2
x4
)
x4
=
0
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x3
(
CD_minus
x0
x1
x2
x4
)
x4
=
0
Known
add_HSNo_minus_HSNo_linv
add_HSNo_minus_HSNo_linv
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
(
minus_HSNo
x0
)
x0
=
0
Theorem
add_OSNo_minus_OSNo_linv
add_OSNo_minus_OSNo_linv
:
∀ x0 .
OSNo
x0
⟶
add_OSNo
(
minus_OSNo
x0
)
x0
=
0
...
Known
CD_add_minus_rinv
CD_add_minus_rinv
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
x4
(
x2
x4
)
=
0
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x3
x4
(
CD_minus
x0
x1
x2
x4
)
=
0
Known
add_HSNo_minus_HSNo_rinv
add_HSNo_minus_HSNo_rinv
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
x0
(
minus_HSNo
x0
)
=
0
Theorem
add_OSNo_minus_OSNo_rinv
add_OSNo_minus_OSNo_rinv
:
∀ x0 .
OSNo
x0
⟶
add_OSNo
x0
(
minus_OSNo
x0
)
=
0
...
Known
CD_mul_0R
CD_mul_0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x4
0
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
0
=
0
Theorem
mul_OSNo_0R
mul_OSNo_0R
:
∀ x0 .
OSNo
x0
⟶
mul_OSNo
x0
0
=
0
...
Known
CD_mul_0L
CD_mul_0L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
x2
0
=
0
⟶
x4
0
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
0
x6
=
0
Theorem
mul_OSNo_0L
mul_OSNo_0L
:
∀ x0 .
OSNo
x0
⟶
mul_OSNo
0
x0
=
0
...
Known
CD_mul_1R
CD_mul_1R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
1
=
x6
Known
mul_HSNo_1R
mul_HSNo_1R
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
x0
1
=
x0
Theorem
mul_OSNo_1R
mul_OSNo_1R
:
∀ x0 .
OSNo
x0
⟶
mul_OSNo
x0
1
=
x0
...
Known
CD_mul_1L
CD_mul_1L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
x2
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
1
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
1
x6
=
x6
Known
mul_HSNo_1L
mul_HSNo_1L
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
1
x0
=
x0
Theorem
mul_OSNo_1L
mul_OSNo_1L
:
∀ x0 .
OSNo
x0
⟶
mul_OSNo
1
x0
=
x0
...
Known
CD_conj_mul
CD_conj_mul
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x2
(
x2
x6
)
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x3
x6
)
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x2
x6
)
=
x2
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x4
x6
x7
)
=
x4
(
x3
x6
)
(
x3
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x5
x6
x7
)
=
x5
(
x3
x7
)
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_conj
x0
x1
x2
x3
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_conj
x0
x1
x2
x3
x7
)
(
CD_conj
x0
x1
x2
x3
x6
)
Known
conj_mul_HSNo
conj_mul_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
conj_HSNo
(
mul_HSNo
x0
x1
)
=
mul_HSNo
(
conj_HSNo
x1
)
(
conj_HSNo
x0
)
Known
minus_mul_HSNo_distrR
minus_mul_HSNo_distrR
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
mul_HSNo
x0
(
minus_HSNo
x1
)
=
minus_HSNo
(
mul_HSNo
x0
x1
)
Known
minus_mul_HSNo_distrL
minus_mul_HSNo_distrL
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
mul_HSNo
(
minus_HSNo
x0
)
x1
=
minus_HSNo
(
mul_HSNo
x0
x1
)
Theorem
conj_mul_OSNo
conj_mul_OSNo
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
conj_OSNo
(
mul_OSNo
x0
x1
)
=
mul_OSNo
(
conj_OSNo
x1
)
(
conj_OSNo
x0
)
...
Known
CD_add_mul_distrL
CD_add_mul_distrL
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x4
x6
x7
)
=
x4
(
x3
x6
)
(
x3
x7
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x4
(
x4
x6
x7
)
x8
=
x4
x6
(
x4
x7
x8
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
x6
(
x4
x7
x8
)
=
x4
(
x5
x6
x7
)
(
x5
x6
x8
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
(
x4
x6
x7
)
x8
=
x4
(
x5
x6
x8
)
(
x5
x7
x8
)
)
⟶
∀ x6 x7 x8 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
x8
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_add
x0
x1
x4
x7
x8
)
=
CD_add
x0
x1
x4
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x8
)
Known
mul_HSNo_distrL
mul_HSNo_distrL
:
∀ x0 x1 x2 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
mul_HSNo
x0
(
add_HSNo
x1
x2
)
=
add_HSNo
(
mul_HSNo
x0
x1
)
(
mul_HSNo
x0
x2
)
Known
mul_HSNo_distrR
mul_HSNo_distrR
:
∀ x0 x1 x2 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
mul_HSNo
(
add_HSNo
x0
x1
)
x2
=
add_HSNo
(
mul_HSNo
x0
x2
)
(
mul_HSNo
x1
x2
)
Theorem
mul_OSNo_distrL
mul_OSNo_distrL
:
∀ x0 x1 x2 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo
x2
⟶
mul_OSNo
x0
(
add_OSNo
x1
x2
)
=
add_OSNo
(
mul_OSNo
x0
x1
)
(
mul_OSNo
x0
x2
)
...
Known
CD_add_mul_distrR
CD_add_mul_distrR
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x4
(
x4
x6
x7
)
x8
=
x4
x6
(
x4
x7
x8
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
x6
(
x4
x7
x8
)
=
x4
(
x5
x6
x7
)
(
x5
x6
x8
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
(
x4
x6
x7
)
x8
=
x4
(
x5
x6
x8
)
(
x5
x7
x8
)
)
⟶
∀ x6 x7 x8 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
x8
⟶
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_add
x0
x1
x4
x6
x7
)
x8
=
CD_add
x0
x1
x4
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x8
)
(
CD_mul
x0
x1
x2
x3
x4
x5
x7
x8
)
Theorem
mul_OSNo_distrR
mul_OSNo_distrR
:
∀ x0 x1 x2 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo
x2
⟶
mul_OSNo
(
add_OSNo
x0
x1
)
x2
=
add_OSNo
(
mul_OSNo
x0
x2
)
(
mul_OSNo
x1
x2
)
...
Known
CD_minus_mul_distrR
CD_minus_mul_distrR
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x2
x6
)
=
x2
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_minus
x0
x1
x2
x7
)
=
CD_minus
x0
x1
x2
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
minus_mul_OSNo_distrR
minus_mul_OSNo_distrR
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
mul_OSNo
x0
(
minus_OSNo
x1
)
=
minus_OSNo
(
mul_OSNo
x0
x1
)
...
Known
CD_minus_mul_distrL
CD_minus_mul_distrL
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_minus
x0
x1
x2
x6
)
x7
=
CD_minus
x0
x1
x2
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
minus_mul_OSNo_distrL
minus_mul_OSNo_distrL
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
mul_OSNo
(
minus_OSNo
x0
)
x1
=
minus_OSNo
(
mul_OSNo
x0
x1
)
...
Known
CD_exp_nat_0
CD_exp_nat_0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 .
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
0
=
1
Theorem
exp_OSNo_nat_0
exp_OSNo_nat_0
:
∀ x0 .
exp_OSNo_nat
x0
0
=
1
...
Known
CD_exp_nat_S
CD_exp_nat_S
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 .
nat_p
x7
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
(
ordsucc
x7
)
=
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
exp_OSNo_nat_S
exp_OSNo_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
exp_OSNo_nat
x0
(
ordsucc
x1
)
=
mul_OSNo
x0
(
exp_OSNo_nat
x0
x1
)
...
Known
CD_exp_nat_1
CD_exp_nat_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
1
=
x6
Theorem
exp_OSNo_nat_1
exp_OSNo_nat_1
:
∀ x0 .
OSNo
x0
⟶
exp_OSNo_nat
x0
1
=
x0
...
Known
CD_exp_nat_2
CD_exp_nat_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
2
=
CD_mul
x0
x1
x2
x3
x4
x5
x6
x6
Theorem
exp_OSNo_nat_2
exp_OSNo_nat_2
:
∀ x0 .
OSNo
x0
⟶
exp_OSNo_nat
x0
2
=
mul_OSNo
x0
x0
...
Known
CD_exp_nat_CD
CD_exp_nat_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
x1
0
⟶
x1
1
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
∀ x7 .
nat_p
x7
⟶
CD_carr
x0
x1
(
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
OSNo_exp_OSNo_nat
OSNo_exp_OSNo_nat
:
∀ x0 .
OSNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
OSNo
(
exp_OSNo_nat
x0
x1
)
...
Theorem
add_HSNo_com_3b_1_2
add_HSNo_com_3b_1_2
:
∀ x0 x1 x2 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
add_HSNo
(
add_HSNo
x0
x1
)
x2
=
add_HSNo
(
add_HSNo
x0
x2
)
x1
...
Theorem
add_HSNo_com_4_inner_mid
add_HSNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
HSNo
x3
⟶
add_HSNo
(
add_HSNo
x0
x1
)
(
add_HSNo
x2
x3
)
=
add_HSNo
(
add_HSNo
x0
x2
)
(
add_HSNo
x1
x3
)
...
Theorem
add_HSNo_rotate_4_0312
add_HSNo_rotate_4_0312
:
∀ x0 x1 x2 x3 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
HSNo
x3
⟶
add_HSNo
(
add_HSNo
x0
x1
)
(
add_HSNo
x2
x3
)
=
add_HSNo
(
add_HSNo
x0
x3
)
(
add_HSNo
x1
x2
)
...
Definition
Octonion_i0
Octonion_i0
:=
HSNo_pair
0
1
Definition
Octonion_i3
Octonion_i3
:=
HSNo_pair
0
(
minus_HSNo
Complex_i
)
Definition
Octonion_i5
Octonion_i5
:=
HSNo_pair
0
(
minus_HSNo
Quaternion_k
)
Definition
Octonion_i6
Octonion_i6
:=
HSNo_pair
0
(
minus_HSNo
Quaternion_j
)
Theorem
OSNo_Complex_i
OSNo_Complex_i
:
OSNo
Complex_i
...
Theorem
OSNo_Quaternion_j
OSNo_Quaternion_j
:
OSNo
Quaternion_j
...
Theorem
OSNo_Quaternion_k
OSNo_Quaternion_k
:
OSNo
Quaternion_k
...
Theorem
OSNo_Octonion_i0
OSNo_Octonion_i0
:
OSNo
Octonion_i0
...
Theorem
OSNo_Octonion_i3
OSNo_Octonion_i3
:
OSNo
Octonion_i3
...
Theorem
OSNo_Octonion_i5
OSNo_Octonion_i5
:
OSNo
Octonion_i5
...
Theorem
OSNo_Octonion_i6
OSNo_Octonion_i6
:
OSNo
Octonion_i6
...
Theorem
OSNo_p0_i0
OSNo_p0_i0
:
OSNo_proj0
Octonion_i0
=
0
...
Theorem
OSNo_p1_i0
OSNo_p1_i0
:
OSNo_proj1
Octonion_i0
=
1
...
Theorem
OSNo_p0_i3
OSNo_p0_i3
:
OSNo_proj0
Octonion_i3
=
0
...
Theorem
OSNo_p1_i3
OSNo_p1_i3
:
OSNo_proj1
Octonion_i3
=
minus_HSNo
Complex_i
...
Theorem
OSNo_p0_i5
OSNo_p0_i5
:
OSNo_proj0
Octonion_i5
=
0
...
Theorem
OSNo_p1_i5
OSNo_p1_i5
:
OSNo_proj1
Octonion_i5
=
minus_HSNo
Quaternion_k
...
Theorem
OSNo_p0_i6
OSNo_p0_i6
:
OSNo_proj0
Octonion_i6
=
0
...
Theorem
OSNo_p1_i6
OSNo_p1_i6
:
OSNo_proj1
Octonion_i6
=
minus_HSNo
Quaternion_j
...
Known
Quaternion_i_sqr
Quaternion_i_sqr
:
mul_HSNo
Complex_i
Complex_i
=
minus_HSNo
1
Theorem
Octonion_i1_sqr
Octonion_i1_sqr
:
mul_OSNo
Complex_i
Complex_i
=
minus_OSNo
1
...
Known
Quaternion_j_sqr
Quaternion_j_sqr
:
mul_HSNo
Quaternion_j
Quaternion_j
=
minus_HSNo
1
Theorem
Octonion_i2_sqr
Octonion_i2_sqr
:
mul_OSNo
Quaternion_j
Quaternion_j
=
minus_OSNo
1
...
Known
Quaternion_k_sqr
Quaternion_k_sqr
:
mul_HSNo
Quaternion_k
Quaternion_k
=
minus_HSNo
1
Theorem
Octonion_i4_sqr
Octonion_i4_sqr
:
mul_OSNo
Quaternion_k
Quaternion_k
=
minus_OSNo
1
...
Param
SNo
SNo
:
ι
→
ο
Known
conj_HSNo_id_SNo
conj_HSNo_id_SNo
:
∀ x0 .
SNo
x0
⟶
conj_HSNo
x0
=
x0
Known
SNo_1
SNo_1
:
SNo
1
Known
SNo_0
SNo_0
:
SNo
0
Theorem
Octonion_i0_sqr
Octonion_i0_sqr
:
mul_OSNo
Octonion_i0
Octonion_i0
=
minus_OSNo
1
...
Known
conj_HSNo_i
conj_HSNo_i
:
conj_HSNo
Complex_i
=
minus_HSNo
Complex_i
Theorem
Octonion_i3_sqr
Octonion_i3_sqr
:
mul_OSNo
Octonion_i3
Octonion_i3
=
minus_OSNo
1
...
Known
conj_HSNo_k
conj_HSNo_k
:
conj_HSNo
Quaternion_k
=
minus_HSNo
Quaternion_k
Theorem
Octonion_i5_sqr
Octonion_i5_sqr
:
mul_OSNo
Octonion_i5
Octonion_i5
=
minus_OSNo
1
...
Known
conj_HSNo_j
conj_HSNo_j
:
conj_HSNo
Quaternion_j
=
minus_HSNo
Quaternion_j
Theorem
Octonion_i6_sqr
Octonion_i6_sqr
:
mul_OSNo
Octonion_i6
Octonion_i6
=
minus_OSNo
1
...