Search for blocks/addresses/...

Proofgold Asset

asset id
85a5bc409e5425f66176a81ea7c5438fffe36bca0df0d0a10fbf320d1b880973
asset hash
ab5ab3f507d0e8afd901c25fd9b1182933df73674332a7d7a4d95c3d85328cd5
bday / block
28513
tx
5c6b2..
preasset
doc published by PrQUS..
Param HSNoHSNo : ιο
Param nInnIn : ιιο
Param SingSing : ιι
Param ordsuccordsucc : ιι
Param nat_pnat_p : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param ordinalordinal : ιο
Param andand : οοο
Definition ExtendedSNoElt_ExtendedSNoElt_ := λ x0 x1 . ∀ x2 . x2prim3 x1or (ordinal x2) (∃ x3 . and (x3x0) (x2 = Sing x3))
Known Sing_nat_fresh_extensionSing_nat_fresh_extension : ∀ x0 . nat_p x01x0∀ x1 . ExtendedSNoElt_ x0 x1∀ x2 . x2x1nIn (Sing x0) x2
Known nat_4nat_4 : nat_p 4
Known In_1_4In_1_4 : 14
Known HSNo_ExtendedSNoElt_4HSNo_ExtendedSNoElt_4 : ∀ x0 . HSNo x0ExtendedSNoElt_ 4 x0
Theorem octonion_tag_freshoctonion_tag_fresh : ∀ x0 . HSNo x0∀ x1 . x1x0nIn (Sing 4) x1
...

Param binunionbinunion : ιιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Definition pair_tagpair_tag := λ x0 x1 x2 . binunion x1 {SetAdjoin x3 x0|x3 ∈ x2}
Definition HSNo_pairHSNo_pair := pair_tag (Sing 4)
Known pair_tag_0pair_tag_0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . pair_tag x0 x2 0 = x2
Theorem HSNo_pair_0HSNo_pair_0 : ∀ x0 . HSNo_pair x0 0 = x0
...

Known pair_tag_prop_1pair_tag_prop_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 x4 x5 . x1 x2x1 x4pair_tag x0 x2 x3 = pair_tag x0 x4 x5x2 = x4
Theorem HSNo_pair_prop_1HSNo_pair_prop_1 : ∀ x0 x1 x2 x3 . HSNo x0HSNo x2HSNo_pair x0 x1 = HSNo_pair x2 x3x0 = x2
...

Known pair_tag_prop_2pair_tag_prop_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 x4 x5 . x1 x2x1 x3x1 x4x1 x5pair_tag x0 x2 x3 = pair_tag x0 x4 x5x3 = x5
Theorem HSNo_pair_prop_2HSNo_pair_prop_2 : ∀ x0 x1 x2 x3 . HSNo x0HSNo x1HSNo x2HSNo x3HSNo_pair x0 x1 = HSNo_pair x2 x3x1 = x3
...

Param CD_carrCD_carr : ι(ιο) → ιο
Definition OSNoOSNo := CD_carr (Sing 4) HSNo
Known CD_carr_ICD_carr_I : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_carr x0 x1 (pair_tag x0 x2 x3)
Theorem OSNo_IOSNo_I : ∀ x0 x1 . HSNo x0HSNo x1OSNo (HSNo_pair x0 x1)
...

Known CD_carr_ECD_carr_E : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2∀ x3 : ι → ο . (∀ x4 x5 . x1 x4x1 x5x2 = pair_tag x0 x4 x5x3 (pair_tag x0 x4 x5))x3 x2
Theorem OSNo_EOSNo_E : ∀ x0 . OSNo x0∀ x1 : ι → ο . (∀ x2 x3 . HSNo x2HSNo x3x0 = HSNo_pair x2 x3x1 (HSNo_pair x2 x3))x1 x0
...

Known CD_carr_0extCD_carr_0ext : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_carr x0 x1 x2
Known HSNo_0HSNo_0 : HSNo 0
Theorem HSNo_OSNoHSNo_OSNo : ∀ x0 . HSNo x0OSNo x0
...

Theorem OSNo_0OSNo_0 : OSNo 0
...

Known HSNo_1HSNo_1 : HSNo 1
Theorem OSNo_1OSNo_1 : OSNo 1
...

Known UnionE_impredUnionE_impred : ∀ x0 x1 . x1prim3 x0∀ x2 : ο . (∀ x3 . x1x3x3x0x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Param SubqSubq : ιιο
Known extension_SNoElt_monextension_SNoElt_mon : ∀ x0 x1 . x0x1∀ x2 . ExtendedSNoElt_ x0 x2ExtendedSNoElt_ x1 x2
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known UnionIUnionI : ∀ x0 x1 x2 . x1x2x2x0x1prim3 x0
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known In_4_5In_4_5 : 45
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Theorem OSNo_ExtendedSNoElt_5OSNo_ExtendedSNoElt_5 : ∀ x0 . OSNo x0ExtendedSNoElt_ 5 x0
...

Param CD_proj0CD_proj0 : ι(ιο) → ιι
Definition OSNo_proj0OSNo_proj0 := CD_proj0 (Sing 4) HSNo
Param CD_proj1CD_proj1 : ι(ιο) → ιι
Definition OSNo_proj1OSNo_proj1 := CD_proj1 (Sing 4) HSNo
Known CD_proj0_1CD_proj0_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2and (x1 (CD_proj0 x0 x1 x2)) (∃ x3 . and (x1 x3) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) x3))
Theorem OSNo_proj0_1OSNo_proj0_1 : ∀ x0 . OSNo x0and (HSNo (OSNo_proj0 x0)) (∃ x1 . and (HSNo x1) (x0 = HSNo_pair (OSNo_proj0 x0) x1))
...

Known CD_proj0_2CD_proj0_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_proj0 x0 x1 (pair_tag x0 x2 x3) = x2
Theorem OSNo_proj0_2OSNo_proj0_2 : ∀ x0 x1 . HSNo x0HSNo x1OSNo_proj0 (HSNo_pair x0 x1) = x0
...

Known CD_proj1_1CD_proj1_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2and (x1 (CD_proj1 x0 x1 x2)) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) (CD_proj1 x0 x1 x2))
Theorem OSNo_proj1_1OSNo_proj1_1 : ∀ x0 . OSNo x0and (HSNo (OSNo_proj1 x0)) (x0 = HSNo_pair (OSNo_proj0 x0) (OSNo_proj1 x0))
...

Known CD_proj1_2CD_proj1_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_proj1 x0 x1 (pair_tag x0 x2 x3) = x3
Theorem OSNo_proj1_2OSNo_proj1_2 : ∀ x0 x1 . HSNo x0HSNo x1OSNo_proj1 (HSNo_pair x0 x1) = x1
...

Known CD_proj0RCD_proj0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x1 (CD_proj0 x0 x1 x2)
Theorem OSNo_proj0ROSNo_proj0R : ∀ x0 . OSNo x0HSNo (OSNo_proj0 x0)
...

Known CD_proj1RCD_proj1R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x1 (CD_proj1 x0 x1 x2)
Theorem OSNo_proj1ROSNo_proj1R : ∀ x0 . OSNo x0HSNo (OSNo_proj1 x0)
...

Known CD_proj0proj1_etaCD_proj0proj1_eta : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x2 = pair_tag x0 (CD_proj0 x0 x1 x2) (CD_proj1 x0 x1 x2)
Theorem OSNo_proj0p1OSNo_proj0p1 : ∀ x0 . OSNo x0x0 = HSNo_pair (OSNo_proj0 x0) (OSNo_proj1 x0)
...

Known CD_proj0proj1_splitCD_proj0proj1_split : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . CD_carr x0 x1 x2CD_carr x0 x1 x3CD_proj0 x0 x1 x2 = CD_proj0 x0 x1 x3CD_proj1 x0 x1 x2 = CD_proj1 x0 x1 x3x2 = x3
Theorem OSNo_proj0proj1_splitOSNo_proj0proj1_split : ∀ x0 x1 . OSNo x0OSNo x1OSNo_proj0 x0 = OSNo_proj0 x1OSNo_proj1 x0 = OSNo_proj1 x1x0 = x1
...

Param HSNoLevHSNoLev : ιι
Definition OSNoLevOSNoLev := λ x0 . binunion (HSNoLev (OSNo_proj0 x0)) (HSNoLev (OSNo_proj1 x0))
Known ordinal_binunionordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Known HSNoLev_ordinalHSNoLev_ordinal : ∀ x0 . HSNo x0ordinal (HSNoLev x0)
Theorem OSNoLev_ordinalOSNoLev_ordinal : ∀ x0 . OSNo x0ordinal (OSNoLev x0)
...

Param CD_minusCD_minus : ι(ιο) → (ιι) → ιι
Param minus_HSNominus_HSNo : ιι
Definition minus_OSNominus_OSNo := CD_minus (Sing 4) HSNo minus_HSNo
Param CD_conjCD_conj : ι(ιο) → (ιι) → (ιι) → ιι
Param conj_HSNoconj_HSNo : ιι
Definition conj_OSNoconj_OSNo := CD_conj (Sing 4) HSNo minus_HSNo conj_HSNo
Param CD_addCD_add : ι(ιο) → (ιιι) → ιιι
Param add_HSNoadd_HSNo : ιιι
Definition add_OSNoadd_OSNo := CD_add (Sing 4) HSNo add_HSNo
Param CD_mulCD_mul : ι(ιο) → (ιι) → (ιι) → (ιιι) → (ιιι) → ιιι
Param mul_HSNomul_HSNo : ιιι
Definition mul_OSNomul_OSNo := CD_mul (Sing 4) HSNo minus_HSNo conj_HSNo add_HSNo mul_HSNo
Param CD_exp_natCD_exp_nat : ι(ιο) → (ιι) → (ιι) → (ιιι) → (ιιι) → ιιι
Definition exp_OSNo_natexp_OSNo_nat := CD_exp_nat (Sing 4) HSNo minus_HSNo conj_HSNo add_HSNo mul_HSNo
Known CD_minus_CDCD_minus_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_carr x0 x1 (CD_minus x0 x1 x2 x3)
Known HSNo_minus_HSNoHSNo_minus_HSNo : ∀ x0 . HSNo x0HSNo (minus_HSNo x0)
Theorem OSNo_minus_OSNoOSNo_minus_OSNo : ∀ x0 . OSNo x0OSNo (minus_OSNo x0)
...

Known CD_minus_proj0CD_minus_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_proj0 x0 x1 (CD_minus x0 x1 x2 x3) = x2 (CD_proj0 x0 x1 x3)
Theorem minus_OSNo_proj0minus_OSNo_proj0 : ∀ x0 . OSNo x0OSNo_proj0 (minus_OSNo x0) = minus_HSNo (OSNo_proj0 x0)
...

Known CD_minus_proj1CD_minus_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_proj1 x0 x1 (CD_minus x0 x1 x2 x3) = x2 (CD_proj1 x0 x1 x3)
Theorem minus_OSNo_proj1minus_OSNo_proj1 : ∀ x0 . OSNo x0OSNo_proj1 (minus_OSNo x0) = minus_HSNo (OSNo_proj1 x0)
...

Known CD_conj_CDCD_conj_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_carr x0 x1 (CD_conj x0 x1 x2 x3 x4)
Known HSNo_conj_HSNoHSNo_conj_HSNo : ∀ x0 . HSNo x0HSNo (conj_HSNo x0)
Theorem OSNo_conj_OSNoOSNo_conj_OSNo : ∀ x0 . OSNo x0OSNo (conj_OSNo x0)
...

Known CD_conj_proj0CD_conj_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_proj0 x0 x1 (CD_conj x0 x1 x2 x3 x4) = x3 (CD_proj0 x0 x1 x4)
Theorem conj_OSNo_proj0conj_OSNo_proj0 : ∀ x0 . OSNo x0OSNo_proj0 (conj_OSNo x0) = conj_HSNo (OSNo_proj0 x0)
...

Known CD_conj_proj1CD_conj_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_proj1 x0 x1 (CD_conj x0 x1 x2 x3 x4) = x2 (CD_proj1 x0 x1 x4)
Theorem conj_OSNo_proj1conj_OSNo_proj1 : ∀ x0 . OSNo x0OSNo_proj1 (conj_OSNo x0) = minus_HSNo (OSNo_proj1 x0)
...

Known CD_add_CDCD_add_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_carr x0 x1 (CD_add x0 x1 x2 x3 x4)
Known HSNo_add_HSNoHSNo_add_HSNo : ∀ x0 x1 . HSNo x0HSNo x1HSNo (add_HSNo x0 x1)
Theorem OSNo_add_OSNoOSNo_add_OSNo : ∀ x0 x1 . OSNo x0OSNo x1OSNo (add_OSNo x0 x1)
...

Known CD_add_proj0CD_add_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_proj0 x0 x1 (CD_add x0 x1 x2 x3 x4) = x2 (CD_proj0 x0 x1 x3) (CD_proj0 x0 x1 x4)
Theorem add_OSNo_proj0add_OSNo_proj0 : ∀ x0 x1 . OSNo x0OSNo x1OSNo_proj0 (add_OSNo x0 x1) = add_HSNo (OSNo_proj0 x0) (OSNo_proj0 x1)
...

Known CD_add_proj1CD_add_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_proj1 x0 x1 (CD_add x0 x1 x2 x3 x4) = x2 (CD_proj1 x0 x1 x3) (CD_proj1 x0 x1 x4)
Theorem add_OSNo_proj1add_OSNo_proj1 : ∀ x0 x1 . OSNo x0OSNo x1OSNo_proj1 (add_OSNo x0 x1) = add_HSNo (OSNo_proj1 x0) (OSNo_proj1 x1)
...

Known CD_mul_CDCD_mul_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Known HSNo_mul_HSNoHSNo_mul_HSNo : ∀ x0 x1 . HSNo x0HSNo x1HSNo (mul_HSNo x0 x1)
Theorem OSNo_mul_OSNoOSNo_mul_OSNo : ∀ x0 x1 . OSNo x0OSNo x1OSNo (mul_OSNo x0 x1)
...

Known CD_mul_proj0CD_mul_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_proj0 x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6)))
Theorem mul_OSNo_proj0mul_OSNo_proj0 : ∀ x0 x1 . OSNo x0OSNo x1OSNo_proj0 (mul_OSNo x0 x1) = add_HSNo (mul_HSNo (OSNo_proj0 x0) (OSNo_proj0 x1)) (minus_HSNo (mul_HSNo (conj_HSNo (OSNo_proj1 x1)) (OSNo_proj1 x0)))
...

Known CD_mul_proj1CD_mul_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_proj1 x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7)))
Theorem mul_OSNo_proj1mul_OSNo_proj1 : ∀ x0 x1 . OSNo x0OSNo x1OSNo_proj1 (mul_OSNo x0 x1) = add_HSNo (mul_HSNo (OSNo_proj1 x1) (OSNo_proj0 x0)) (mul_HSNo (OSNo_proj1 x0) (conj_HSNo (OSNo_proj0 x1)))
...

Known CD_proj0_FCD_proj0_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_proj0 x0 x1 x2 = x2
Theorem HSNo_OSNo_proj0HSNo_OSNo_proj0 : ∀ x0 . HSNo x0OSNo_proj0 x0 = x0
...

Known CD_proj1_FCD_proj1_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_proj1 x0 x1 x2 = 0
Theorem HSNo_OSNo_proj1HSNo_OSNo_proj1 : ∀ x0 . HSNo x0OSNo_proj1 x0 = 0
...

Theorem OSNo_p0_0OSNo_p0_0 : OSNo_proj0 0 = 0
...

Theorem OSNo_p1_0OSNo_p1_0 : OSNo_proj1 0 = 0
...

Theorem OSNo_p0_1OSNo_p0_1 : OSNo_proj0 1 = 1
...

Theorem OSNo_p1_1OSNo_p1_1 : OSNo_proj1 1 = 0
...

Param Complex_iComplex_i : ι
Known HSNo_Complex_iHSNo_Complex_i : HSNo Complex_i
Theorem OSNo_p0_iOSNo_p0_i : OSNo_proj0 Complex_i = Complex_i
...

Theorem OSNo_p1_iOSNo_p1_i : OSNo_proj1 Complex_i = 0
...

Param Quaternion_jQuaternion_j : ι
Known HSNo_Quaternion_jHSNo_Quaternion_j : HSNo Quaternion_j
Theorem OSNo_p0_jOSNo_p0_j : OSNo_proj0 Quaternion_j = Quaternion_j
...

Theorem OSNo_p1_jOSNo_p1_j : OSNo_proj1 Quaternion_j = 0
...

Param Quaternion_kQuaternion_k : ι
Known HSNo_Quaternion_kHSNo_Quaternion_k : HSNo Quaternion_k
Theorem OSNo_p0_kOSNo_p0_k : OSNo_proj0 Quaternion_k = Quaternion_k
...

Theorem OSNo_p1_kOSNo_p1_k : OSNo_proj1 Quaternion_k = 0
...

Known CD_minus_F_eqCD_minus_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . x1 0x2 0 = 0∀ x3 . x1 x3CD_minus x0 x1 x2 x3 = x2 x3
Known minus_HSNo_0minus_HSNo_0 : minus_HSNo 0 = 0
Theorem minus_OSNo_minus_HSNominus_OSNo_minus_HSNo : ∀ x0 . HSNo x0minus_OSNo x0 = minus_HSNo x0
...

Theorem minus_OSNo_0minus_OSNo_0 : minus_OSNo 0 = 0
...

Known CD_conj_F_eqCD_conj_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . x1 0x2 0 = 0∀ x3 : ι → ι . ∀ x4 . x1 x4CD_conj x0 x1 x2 x3 x4 = x3 x4
Theorem conj_OSNo_conj_HSNoconj_OSNo_conj_HSNo : ∀ x0 . HSNo x0conj_OSNo x0 = conj_HSNo x0
...

Known conj_HSNo_0conj_HSNo_0 : conj_HSNo 0 = 0
Theorem conj_OSNo_0conj_OSNo_0 : conj_OSNo 0 = 0
...

Known conj_HSNo_1conj_HSNo_1 : conj_HSNo 1 = 1
Theorem conj_OSNo_1conj_OSNo_1 : conj_OSNo 1 = 1
...

Known CD_add_F_eqCD_add_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0x2 0 0 = 0∀ x3 x4 . x1 x3x1 x4CD_add x0 x1 x2 x3 x4 = x2 x3 x4
Known add_HSNo_0Ladd_HSNo_0L : ∀ x0 . HSNo x0add_HSNo 0 x0 = x0
Theorem add_OSNo_add_HSNoadd_OSNo_add_HSNo : ∀ x0 x1 . HSNo x0HSNo x1add_OSNo x0 x1 = add_HSNo x0 x1
...

Known CD_mul_F_eqCD_mul_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))x2 0 = 0(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 x7 . x1 x6x1 x7CD_mul x0 x1 x2 x3 x4 x5 x6 x7 = x5 x6 x7
Known add_HSNo_0Radd_HSNo_0R : ∀ x0 . HSNo x0add_HSNo x0 0 = x0
Known mul_HSNo_0Lmul_HSNo_0L : ∀ x0 . HSNo x0mul_HSNo 0 x0 = 0
Known mul_HSNo_0Rmul_HSNo_0R : ∀ x0 . HSNo x0mul_HSNo x0 0 = 0
Theorem mul_OSNo_mul_HSNomul_OSNo_mul_HSNo : ∀ x0 x1 . HSNo x0HSNo x1mul_OSNo x0 x1 = mul_HSNo x0 x1
...

Known CD_minus_involCD_minus_invol : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))(∀ x3 . x1 x3x2 (x2 x3) = x3)∀ x3 . CD_carr x0 x1 x3CD_minus x0 x1 x2 (CD_minus x0 x1 x2 x3) = x3
Known minus_HSNo_involminus_HSNo_invol : ∀ x0 . HSNo x0minus_HSNo (minus_HSNo x0) = x0
Theorem minus_OSNo_involminus_OSNo_invol : ∀ x0 . OSNo x0minus_OSNo (minus_OSNo x0) = x0
...

Known CD_conj_involCD_conj_invol : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x1 (x3 x4))(∀ x4 . x1 x4x2 (x2 x4) = x4)(∀ x4 . x1 x4x3 (x3 x4) = x4)∀ x4 . CD_carr x0 x1 x4CD_conj x0 x1 x2 x3 (CD_conj x0 x1 x2 x3 x4) = x4
Known conj_HSNo_involconj_HSNo_invol : ∀ x0 . HSNo x0conj_HSNo (conj_HSNo x0) = x0
Theorem conj_OSNo_involconj_OSNo_invol : ∀ x0 . OSNo x0conj_OSNo (conj_OSNo x0) = x0
...

Known CD_conj_minusCD_conj_minus : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x1 (x3 x4))(∀ x4 . x1 x4x3 (x2 x4) = x2 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_conj x0 x1 x2 x3 (CD_minus x0 x1 x2 x4) = CD_minus x0 x1 x2 (CD_conj x0 x1 x2 x3 x4)
Known conj_minus_HSNoconj_minus_HSNo : ∀ x0 . HSNo x0conj_HSNo (minus_HSNo x0) = minus_HSNo (conj_HSNo x0)
Theorem conj_minus_OSNoconj_minus_OSNo : ∀ x0 . OSNo x0conj_OSNo (minus_OSNo x0) = minus_OSNo (conj_OSNo x0)
...

Known CD_minus_addCD_minus_add : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 x5 . x1 x4x1 x5x1 (x3 x4 x5))(∀ x4 x5 . x1 x4x1 x5x2 (x3 x4 x5) = x3 (x2 x4) (x2 x5))∀ x4 x5 . CD_carr x0 x1 x4CD_carr x0 x1 x5CD_minus x0 x1 x2 (CD_add x0 x1 x3 x4 x5) = CD_add x0 x1 x3 (CD_minus x0 x1 x2 x4) (CD_minus x0 x1 x2 x5)
Known minus_add_HSNominus_add_HSNo : ∀ x0 x1 . HSNo x0HSNo x1minus_HSNo (add_HSNo x0 x1) = add_HSNo (minus_HSNo x0) (minus_HSNo x1)
Theorem minus_add_OSNominus_add_OSNo : ∀ x0 x1 . OSNo x0OSNo x1minus_OSNo (add_OSNo x0 x1) = add_OSNo (minus_OSNo x0) (minus_OSNo x1)
...

Known CD_conj_addCD_conj_add : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 : ι → ι → ι . (∀ x5 . x1 x5x1 (x2 x5))(∀ x5 . x1 x5x1 (x3 x5))(∀ x5 x6 . x1 x5x1 x6x1 (x4 x5 x6))(∀ x5 x6 . x1 x5x1 x6x2 (x4 x5 x6) = x4 (x2 x5) (x2 x6))(∀ x5 x6 . x1 x5x1 x6x3 (x4 x5 x6) = x4 (x3 x5) (x3 x6))∀ x5 x6 . CD_carr x0 x1 x5CD_carr x0 x1 x6CD_conj x0 x1 x2 x3 (CD_add x0 x1 x4 x5 x6) = CD_add x0 x1 x4 (CD_conj x0 x1 x2 x3 x5) (CD_conj x0 x1 x2 x3 x6)
Known conj_add_HSNoconj_add_HSNo : ∀ x0 x1 . HSNo x0HSNo x1conj_HSNo (add_HSNo x0 x1) = add_HSNo (conj_HSNo x0) (conj_HSNo x1)
Theorem conj_add_OSNoconj_add_OSNo : ∀ x0 x1 . OSNo x0OSNo x1conj_OSNo (add_OSNo x0 x1) = add_OSNo (conj_OSNo x0) (conj_OSNo x1)
...

Known CD_add_comCD_add_com : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x2 x3 x4 = x2 x4 x3)∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_add x0 x1 x2 x3 x4 = CD_add x0 x1 x2 x4 x3
Known add_HSNo_comadd_HSNo_com : ∀ x0 x1 . HSNo x0HSNo x1add_HSNo x0 x1 = add_HSNo x1 x0
Theorem add_OSNo_comadd_OSNo_com : ∀ x0 x1 . OSNo x0OSNo x1add_OSNo x0 x1 = add_OSNo x1 x0
...

Known CD_add_assocCD_add_assoc : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))(∀ x3 x4 x5 . x1 x3x1 x4x1 x5x2 (x2 x3 x4) x5 = x2 x3 (x2 x4 x5))∀ x3 x4 x5 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_carr x0 x1 x5CD_add x0 x1 x2 (CD_add x0 x1 x2 x3 x4) x5 = CD_add x0 x1 x2 x3 (CD_add x0 x1 x2 x4 x5)
Known add_HSNo_assocadd_HSNo_assoc : ∀ x0 x1 x2 . HSNo x0HSNo x1HSNo x2add_HSNo (add_HSNo x0 x1) x2 = add_HSNo x0 (add_HSNo x1 x2)
Theorem add_OSNo_assocadd_OSNo_assoc : ∀ x0 x1 x2 . OSNo x0OSNo x1OSNo x2add_OSNo (add_OSNo x0 x1) x2 = add_OSNo x0 (add_OSNo x1 x2)
...

Known CD_add_0LCD_add_0L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0(∀ x3 . x1 x3x2 0 x3 = x3)∀ x3 . CD_carr x0 x1 x3CD_add x0 x1 x2 0 x3 = x3
Theorem add_OSNo_0Ladd_OSNo_0L : ∀ x0 . OSNo x0add_OSNo 0 x0 = x0
...

Known CD_add_0RCD_add_0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0(∀ x3 . x1 x3x2 x3 0 = x3)∀ x3 . CD_carr x0 x1 x3CD_add x0 x1 x2 x3 0 = x3
Theorem add_OSNo_0Radd_OSNo_0R : ∀ x0 . OSNo x0add_OSNo x0 0 = x0
...

Known CD_add_minus_linvCD_add_minus_linv : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x3 (x2 x4) x4 = 0)∀ x4 . CD_carr x0 x1 x4CD_add x0 x1 x3 (CD_minus x0 x1 x2 x4) x4 = 0
Known add_HSNo_minus_HSNo_linvadd_HSNo_minus_HSNo_linv : ∀ x0 . HSNo x0add_HSNo (minus_HSNo x0) x0 = 0
Theorem add_OSNo_minus_OSNo_linvadd_OSNo_minus_OSNo_linv : ∀ x0 . OSNo x0add_OSNo (minus_OSNo x0) x0 = 0
...

Known CD_add_minus_rinvCD_add_minus_rinv : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x3 x4 (x2 x4) = 0)∀ x4 . CD_carr x0 x1 x4CD_add x0 x1 x3 x4 (CD_minus x0 x1 x2 x4) = 0
Known add_HSNo_minus_HSNo_rinvadd_HSNo_minus_HSNo_rinv : ∀ x0 . HSNo x0add_HSNo x0 (minus_HSNo x0) = 0
Theorem add_OSNo_minus_OSNo_rinvadd_OSNo_minus_OSNo_rinv : ∀ x0 . OSNo x0add_OSNo x0 (minus_OSNo x0) = 0
...

Known CD_mul_0RCD_mul_0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x2 0 = 0x3 0 = 0x4 0 0 = 0(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 x6 0 = 0
Theorem mul_OSNo_0Rmul_OSNo_0R : ∀ x0 . OSNo x0mul_OSNo x0 0 = 0
...

Known CD_mul_0LCD_mul_0L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0(∀ x6 . x1 x6x1 (x3 x6))x2 0 = 0x4 0 0 = 0(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 0 x6 = 0
Theorem mul_OSNo_0Lmul_OSNo_0L : ∀ x0 . OSNo x0mul_OSNo 0 x0 = 0
...

Known CD_mul_1RCD_mul_1R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 x6 1 = x6
Known mul_HSNo_1Rmul_HSNo_1R : ∀ x0 . HSNo x0mul_HSNo x0 1 = x0
Theorem mul_OSNo_1Rmul_OSNo_1R : ∀ x0 . OSNo x0mul_OSNo x0 1 = x0
...

Known CD_mul_1LCD_mul_1L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1(∀ x6 . x1 x6x1 (x3 x6))x2 0 = 0(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)(∀ x6 . x1 x6x5 1 x6 = x6)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 1 x6 = x6
Known mul_HSNo_1Lmul_HSNo_1L : ∀ x0 . HSNo x0mul_HSNo 1 x0 = x0
Theorem mul_OSNo_1Lmul_OSNo_1L : ∀ x0 . OSNo x0mul_OSNo 1 x0 = x0
...

Known CD_conj_mulCD_conj_mul : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 . x1 x6x2 (x2 x6) = x6)(∀ x6 . x1 x6x3 (x3 x6) = x6)(∀ x6 . x1 x6x3 (x2 x6) = x2 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 . x1 x6x1 x7x3 (x5 x6 x7) = x5 (x3 x7) (x3 x6))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_conj x0 x1 x2 x3 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = CD_mul x0 x1 x2 x3 x4 x5 (CD_conj x0 x1 x2 x3 x7) (CD_conj x0 x1 x2 x3 x6)
Known conj_mul_HSNoconj_mul_HSNo : ∀ x0 x1 . HSNo x0HSNo x1conj_HSNo (mul_HSNo x0 x1) = mul_HSNo (conj_HSNo x1) (conj_HSNo x0)
Known minus_mul_HSNo_distrRminus_mul_HSNo_distrR : ∀ x0 x1 . HSNo x0HSNo x1mul_HSNo x0 (minus_HSNo x1) = minus_HSNo (mul_HSNo x0 x1)
Known minus_mul_HSNo_distrLminus_mul_HSNo_distrL : ∀ x0 x1 . HSNo x0HSNo x1mul_HSNo (minus_HSNo x0) x1 = minus_HSNo (mul_HSNo x0 x1)
Theorem conj_mul_OSNoconj_mul_OSNo : ∀ x0 x1 . OSNo x0OSNo x1conj_OSNo (mul_OSNo x0 x1) = mul_OSNo (conj_OSNo x1) (conj_OSNo x0)
...

Known CD_add_mul_distrLCD_add_mul_distrL : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8))∀ x6 x7 x8 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 x8CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_add x0 x1 x4 x7 x8) = CD_add x0 x1 x4 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) (CD_mul x0 x1 x2 x3 x4 x5 x6 x8)
Known mul_HSNo_distrLmul_HSNo_distrL : ∀ x0 x1 x2 . HSNo x0HSNo x1HSNo x2mul_HSNo x0 (add_HSNo x1 x2) = add_HSNo (mul_HSNo x0 x1) (mul_HSNo x0 x2)
Known mul_HSNo_distrRmul_HSNo_distrR : ∀ x0 x1 x2 . HSNo x0HSNo x1HSNo x2mul_HSNo (add_HSNo x0 x1) x2 = add_HSNo (mul_HSNo x0 x2) (mul_HSNo x1 x2)
Theorem mul_OSNo_distrLmul_OSNo_distrL : ∀ x0 x1 x2 . OSNo x0OSNo x1OSNo x2mul_OSNo x0 (add_OSNo x1 x2) = add_OSNo (mul_OSNo x0 x1) (mul_OSNo x0 x2)
...

Known CD_add_mul_distrRCD_add_mul_distrR : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8))∀ x6 x7 x8 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 x8CD_mul x0 x1 x2 x3 x4 x5 (CD_add x0 x1 x4 x6 x7) x8 = CD_add x0 x1 x4 (CD_mul x0 x1 x2 x3 x4 x5 x6 x8) (CD_mul x0 x1 x2 x3 x4 x5 x7 x8)
Theorem mul_OSNo_distrRmul_OSNo_distrR : ∀ x0 x1 x2 . OSNo x0OSNo x1OSNo x2mul_OSNo (add_OSNo x0 x1) x2 = add_OSNo (mul_OSNo x0 x2) (mul_OSNo x1 x2)
...

Known CD_minus_mul_distrRCD_minus_mul_distrR : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 . x1 x6x3 (x2 x6) = x2 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_minus x0 x1 x2 x7) = CD_minus x0 x1 x2 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Theorem minus_mul_OSNo_distrRminus_mul_OSNo_distrR : ∀ x0 x1 . OSNo x0OSNo x1mul_OSNo x0 (minus_OSNo x1) = minus_OSNo (mul_OSNo x0 x1)
...

Known CD_minus_mul_distrLCD_minus_mul_distrL : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_mul x0 x1 x2 x3 x4 x5 (CD_minus x0 x1 x2 x6) x7 = CD_minus x0 x1 x2 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Theorem minus_mul_OSNo_distrLminus_mul_OSNo_distrL : ∀ x0 x1 . OSNo x0OSNo x1mul_OSNo (minus_OSNo x0) x1 = minus_OSNo (mul_OSNo x0 x1)
...

Known CD_exp_nat_0CD_exp_nat_0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . ∀ x6 . CD_exp_nat x0 x1 x2 x3 x4 x5 x6 0 = 1
Theorem exp_OSNo_nat_0exp_OSNo_nat_0 : ∀ x0 . exp_OSNo_nat x0 0 = 1
...

Known CD_exp_nat_SCD_exp_nat_S : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 . nat_p x7CD_exp_nat x0 x1 x2 x3 x4 x5 x6 (ordsucc x7) = CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_exp_nat x0 x1 x2 x3 x4 x5 x6 x7)
Theorem exp_OSNo_nat_Sexp_OSNo_nat_S : ∀ x0 x1 . nat_p x1exp_OSNo_nat x0 (ordsucc x1) = mul_OSNo x0 (exp_OSNo_nat x0 x1)
...

Known CD_exp_nat_1CD_exp_nat_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_exp_nat x0 x1 x2 x3 x4 x5 x6 1 = x6
Theorem exp_OSNo_nat_1exp_OSNo_nat_1 : ∀ x0 . OSNo x0exp_OSNo_nat x0 1 = x0
...

Known CD_exp_nat_2CD_exp_nat_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_exp_nat x0 x1 x2 x3 x4 x5 x6 2 = CD_mul x0 x1 x2 x3 x4 x5 x6 x6
Theorem exp_OSNo_nat_2exp_OSNo_nat_2 : ∀ x0 . OSNo x0exp_OSNo_nat x0 2 = mul_OSNo x0 x0
...

Known CD_exp_nat_CDCD_exp_nat_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))x1 0x1 1∀ x6 . CD_carr x0 x1 x6∀ x7 . nat_p x7CD_carr x0 x1 (CD_exp_nat x0 x1 x2 x3 x4 x5 x6 x7)
Theorem OSNo_exp_OSNo_natOSNo_exp_OSNo_nat : ∀ x0 . OSNo x0∀ x1 . nat_p x1OSNo (exp_OSNo_nat x0 x1)
...

Theorem add_HSNo_com_3b_1_2add_HSNo_com_3b_1_2 : ∀ x0 x1 x2 . HSNo x0HSNo x1HSNo x2add_HSNo (add_HSNo x0 x1) x2 = add_HSNo (add_HSNo x0 x2) x1
...

Theorem add_HSNo_com_4_inner_midadd_HSNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . HSNo x0HSNo x1HSNo x2HSNo x3add_HSNo (add_HSNo x0 x1) (add_HSNo x2 x3) = add_HSNo (add_HSNo x0 x2) (add_HSNo x1 x3)
...

Theorem add_HSNo_rotate_4_0312add_HSNo_rotate_4_0312 : ∀ x0 x1 x2 x3 . HSNo x0HSNo x1HSNo x2HSNo x3add_HSNo (add_HSNo x0 x1) (add_HSNo x2 x3) = add_HSNo (add_HSNo x0 x3) (add_HSNo x1 x2)
...

Definition Octonion_i0Octonion_i0 := HSNo_pair 0 1
Definition Octonion_i3Octonion_i3 := HSNo_pair 0 (minus_HSNo Complex_i)
Definition Octonion_i5Octonion_i5 := HSNo_pair 0 (minus_HSNo Quaternion_k)
Definition Octonion_i6Octonion_i6 := HSNo_pair 0 (minus_HSNo Quaternion_j)
Theorem OSNo_Complex_iOSNo_Complex_i : OSNo Complex_i
...

Theorem OSNo_Quaternion_jOSNo_Quaternion_j : OSNo Quaternion_j
...

Theorem OSNo_Quaternion_kOSNo_Quaternion_k : OSNo Quaternion_k
...

Theorem OSNo_Octonion_i0OSNo_Octonion_i0 : OSNo Octonion_i0
...

Theorem OSNo_Octonion_i3OSNo_Octonion_i3 : OSNo Octonion_i3
...

Theorem OSNo_Octonion_i5OSNo_Octonion_i5 : OSNo Octonion_i5
...

Theorem OSNo_Octonion_i6OSNo_Octonion_i6 : OSNo Octonion_i6
...

Theorem OSNo_p0_i0OSNo_p0_i0 : OSNo_proj0 Octonion_i0 = 0
...

Theorem OSNo_p1_i0OSNo_p1_i0 : OSNo_proj1 Octonion_i0 = 1
...

Theorem OSNo_p0_i3OSNo_p0_i3 : OSNo_proj0 Octonion_i3 = 0
...

Theorem OSNo_p1_i3OSNo_p1_i3 : OSNo_proj1 Octonion_i3 = minus_HSNo Complex_i
...

Theorem OSNo_p0_i5OSNo_p0_i5 : OSNo_proj0 Octonion_i5 = 0
...

Theorem OSNo_p1_i5OSNo_p1_i5 : OSNo_proj1 Octonion_i5 = minus_HSNo Quaternion_k
...

Theorem OSNo_p0_i6OSNo_p0_i6 : OSNo_proj0 Octonion_i6 = 0
...

Theorem OSNo_p1_i6OSNo_p1_i6 : OSNo_proj1 Octonion_i6 = minus_HSNo Quaternion_j
...

Known Quaternion_i_sqrQuaternion_i_sqr : mul_HSNo Complex_i Complex_i = minus_HSNo 1
Theorem Octonion_i1_sqrOctonion_i1_sqr : mul_OSNo Complex_i Complex_i = minus_OSNo 1
...

Known Quaternion_j_sqrQuaternion_j_sqr : mul_HSNo Quaternion_j Quaternion_j = minus_HSNo 1
Theorem Octonion_i2_sqrOctonion_i2_sqr : mul_OSNo Quaternion_j Quaternion_j = minus_OSNo 1
...

Known Quaternion_k_sqrQuaternion_k_sqr : mul_HSNo Quaternion_k Quaternion_k = minus_HSNo 1
Theorem Octonion_i4_sqrOctonion_i4_sqr : mul_OSNo Quaternion_k Quaternion_k = minus_OSNo 1
...

Param SNoSNo : ιο
Known conj_HSNo_id_SNoconj_HSNo_id_SNo : ∀ x0 . SNo x0conj_HSNo x0 = x0
Known SNo_1SNo_1 : SNo 1
Known SNo_0SNo_0 : SNo 0
Theorem Octonion_i0_sqrOctonion_i0_sqr : mul_OSNo Octonion_i0 Octonion_i0 = minus_OSNo 1
...

Known conj_HSNo_iconj_HSNo_i : conj_HSNo Complex_i = minus_HSNo Complex_i
Theorem Octonion_i3_sqrOctonion_i3_sqr : mul_OSNo Octonion_i3 Octonion_i3 = minus_OSNo 1
...

Known conj_HSNo_kconj_HSNo_k : conj_HSNo Quaternion_k = minus_HSNo Quaternion_k
Theorem Octonion_i5_sqrOctonion_i5_sqr : mul_OSNo Octonion_i5 Octonion_i5 = minus_OSNo 1
...

Known conj_HSNo_jconj_HSNo_j : conj_HSNo Quaternion_j = minus_HSNo Quaternion_j
Theorem Octonion_i6_sqrOctonion_i6_sqr : mul_OSNo Octonion_i6 Octonion_i6 = minus_OSNo 1
...