Search for blocks/addresses/...
Proofgold Asset
asset id
8d9f22b4e01b98251eae61b400eaf9783ffa0f905ea7d4264e8de49122fee712
asset hash
b2600b8412ede80f1ac4b3cbd16c0ef4cd836ee41fd4a5a3752f9a35845e90db
bday / block
4913
tx
788c2..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
explicit_Nats
explicit_Nats
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
and
(
and
(
x1
∈
x0
)
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
)
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
x1
⟶
∀ x4 : ο .
x4
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
)
Known
and5I
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
explicit_Nats_I
explicit_Nats_I
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
x1
∈
x0
⟶
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
x1
⟶
∀ x4 : ο .
x4
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
)
⟶
explicit_Nats
x0
x1
x2
(proof)
Known
and5E
and5E
:
∀ x0 x1 x2 x3 x4 : ο .
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
)
⟶
x5
Theorem
explicit_Nats_E
explicit_Nats_E
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 : ο .
(
explicit_Nats
x0
x1
x2
⟶
x1
∈
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x0
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 :
ι → ο
.
x4
x1
⟶
(
∀ x5 .
x4
x5
⟶
x4
(
x2
x5
)
)
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
)
⟶
x3
)
⟶
explicit_Nats
x0
x1
x2
⟶
x3
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
explicit_Nats_ind
explicit_Nats_ind
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
(proof)
Param
omega
omega
:
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Known
e4648..
:
0
∈
omega
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Definition
nat_p
nat_p
:=
λ x0 .
∀ x1 :
ι → ο
.
x1
0
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
ordsucc
x2
)
)
⟶
x1
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
explicit_Nats_omega
explicit_Nats_omega
:
explicit_Nats
omega
0
ordsucc
(proof)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Theorem
explicit_Nats_transfer
explicit_Nats_transfer
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 x4 .
∀ x5 x6 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
bij
x0
x3
x6
⟶
x6
x1
=
x4
⟶
(
∀ x7 .
x7
∈
x0
⟶
x6
(
x2
x7
)
=
x5
(
x6
x7
)
)
⟶
explicit_Nats
x3
x4
x5
(proof)
Definition
explicit_Field
explicit_Field
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
)
(
x1
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
)
(
x2
∈
x0
)
)
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
Known
and7I
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Theorem
explicit_Field_I
explicit_Field_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
x1
∈
x0
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_Field
x0
x1
x2
x3
x4
(proof)
Known
and7E
and7E
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
⟶
∀ x7 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
)
⟶
x7
Theorem
explicit_Field_E
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
(proof)
Definition
explicit_Field_minus
explicit_Field_minus
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 .
prim0
(
λ x6 .
and
(
x6
∈
x0
)
(
x3
x5
x6
=
x1
)
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
explicit_Field_minus_prop
explicit_Field_minus_prop
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
and
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
∈
x0
)
(
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
)
(proof)
Theorem
explicit_Field_minus_clos
explicit_Field_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
∈
x0
(proof)
Theorem
explicit_Field_minus_R
explicit_Field_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
(proof)
Theorem
explicit_Field_minus_L
explicit_Field_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x5
=
x1
(proof)
Theorem
explicit_Field_plus_cancelL
explicit_Field_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
(proof)
Theorem
explicit_Field_plus_cancelR
explicit_Field_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
(proof)
Theorem
explicit_Field_minus_invol
explicit_Field_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x5
(proof)
Theorem
explicit_Field_minus_one_In
explicit_Field_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x2
∈
x0
(proof)
Theorem
explicit_Field_zero_multR
explicit_Field_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
x1
=
x1
(proof)
Theorem
explicit_Field_zero_multL
explicit_Field_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x1
x5
=
x1
(proof)
Theorem
explicit_Field_minus_mult
explicit_Field_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
=
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x5
(proof)
Theorem
explicit_Field_minus_one_square
explicit_Field_minus_one_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
=
x2
(proof)
Theorem
explicit_Field_minus_square
explicit_Field_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x4
x5
x5
(proof)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
explicit_OrderedField
explicit_OrderedField
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
and
(
and
(
and
(
and
(
and
(
explicit_Field
x0
x1
x2
x3
x4
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
iff
(
and
(
x5
x6
x7
)
(
x5
x7
x6
)
)
(
x6
=
x7
)
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
or
(
x5
x6
x7
)
(
x5
x7
x6
)
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
(
x3
x6
x8
)
(
x3
x7
x8
)
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x5
x1
(
x4
x6
x7
)
)
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Theorem
explicit_OrderedField_I
explicit_OrderedField_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
iff
(
and
(
x5
x6
x7
)
(
x5
x7
x6
)
)
(
x6
=
x7
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
or
(
x5
x6
x7
)
(
x5
x7
x6
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
(
x3
x6
x8
)
(
x3
x7
x8
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x5
x1
(
x4
x6
x7
)
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
(proof)
Known
and6E
and6E
:
∀ x0 x1 x2 x3 x4 x5 : ο .
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
⟶
∀ x6 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
)
⟶
x6
Theorem
explicit_OrderedField_E
explicit_OrderedField_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x5
x7
x8
⟶
x5
x8
x9
⟶
x5
x7
x9
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
iff
(
and
(
x5
x7
x8
)
(
x5
x8
x7
)
)
(
x7
=
x8
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
or
(
x5
x7
x8
)
(
x5
x8
x7
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x5
x7
x8
⟶
x5
(
x3
x7
x9
)
(
x3
x8
x9
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x1
x7
⟶
x5
x1
x8
⟶
x5
x1
(
x4
x7
x8
)
)
⟶
x6
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
(proof)
Definition
lt
lt
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 x7 .
and
(
x5
x6
x7
)
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
Definition
natOfOrderedField_p
natOfOrderedField_p
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 .
∀ x7 :
ι → ο
.
x7
x1
⟶
(
∀ x8 .
x7
x8
⟶
x7
(
x3
x8
x2
)
)
⟶
x7
x6
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Theorem
explicit_Nats_natOfOrderedField
explicit_Nats_natOfOrderedField
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Nats
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
x1
(
λ x6 .
x3
x6
x2
)
(proof)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
explicit_Reals
explicit_Reals
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
and
(
and
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x7
(
x4
x9
x6
)
)
⟶
x8
)
⟶
x8
)
)
(
∀ x6 .
x6
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x8 .
x8
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x6
x8
)
(
ap
x7
x8
)
)
(
x5
(
ap
x6
x8
)
(
ap
x6
(
x3
x8
x2
)
)
)
)
(
x5
(
ap
x7
(
x3
x8
x2
)
)
(
ap
x7
x8
)
)
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
x0
)
(
∀ x10 .
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x6
x10
)
x9
)
(
x5
x9
(
ap
x7
x10
)
)
)
⟶
x8
)
⟶
x8
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
explicit_Reals_I
explicit_Reals_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x7
(
x4
x9
x6
)
)
⟶
x8
)
⟶
x8
)
⟶
(
∀ x6 .
x6
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x8 .
x8
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x6
x8
)
(
ap
x7
x8
)
)
(
x5
(
ap
x6
x8
)
(
ap
x6
(
x3
x8
x2
)
)
)
)
(
x5
(
ap
x7
(
x3
x8
x2
)
)
(
ap
x7
x8
)
)
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
x0
)
(
∀ x10 .
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x6
x10
)
x9
)
(
x5
x9
(
ap
x7
x10
)
)
)
⟶
x8
)
⟶
x8
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
(proof)
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
explicit_Reals_E
explicit_Reals_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x7
⟶
x5
x1
x8
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x8
(
x4
x10
x7
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x8 .
x8
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x9 .
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x7
x9
)
(
ap
x8
x9
)
)
(
x5
(
ap
x7
x9
)
(
ap
x7
(
x3
x9
x2
)
)
)
)
(
x5
(
ap
x8
(
x3
x9
x2
)
)
(
ap
x8
x9
)
)
)
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x0
)
(
∀ x11 .
x11
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x7
x11
)
x10
)
(
x5
x10
(
ap
x8
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
x6
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
x6
(proof)
Theorem
explicit_Field_transfer
explicit_Field_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 x7 .
∀ x8 x9 :
ι →
ι → ι
.
∀ x10 :
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
bij
x0
x5
x10
⟶
x10
x1
=
x6
⟶
x10
x2
=
x7
⟶
(
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x10
(
x3
x11
x12
)
=
x8
(
x10
x11
)
(
x10
x12
)
)
⟶
(
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x10
(
x4
x11
x12
)
=
x9
(
x10
x11
)
(
x10
x12
)
)
⟶
explicit_Field
x5
x6
x7
x8
x9
(proof)
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
explicit_OrderedField_transfer
explicit_OrderedField_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
explicit_OrderedField
x6
x7
x8
x9
x10
x11
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Theorem
explicit_Reals_transfer
explicit_Reals_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
explicit_Reals
x6
x7
x8
x9
x10
x11
(proof)
Definition
explicit_Complex
explicit_Complex
:=
λ x0 .
λ x1 x2 :
ι → ι
.
λ x3 x4 x5 .
λ x6 x7 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
explicit_Field
x0
x3
x4
x6
x7
)
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ο
.
explicit_Reals
{x10 ∈
x0
|
x1
x10
=
x10
}
x3
x4
x6
x7
x9
⟶
x8
)
⟶
x8
)
)
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
{x9 ∈
x0
|
x1
x9
=
x9
}
)
)
(
x5
∈
x0
)
)
(
∀ x8 .
x8
∈
x0
⟶
x1
x8
∈
x0
)
)
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
x0
)
)
(
∀ x8 .
x8
∈
x0
⟶
x8
=
x6
(
x1
x8
)
(
x7
x5
(
x2
x8
)
)
)
)
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x1
x8
=
x1
x9
⟶
x2
x8
=
x2
x9
⟶
x8
=
x9
)
)
(
x6
(
x7
x5
x5
)
x4
=
x3
)
Theorem
explicit_Complex_I
explicit_Complex_I
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 x5 .
∀ x6 x7 :
ι →
ι → ι
.
explicit_Field
x0
x3
x4
x6
x7
⟶
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ο
.
explicit_Reals
{x10 ∈
x0
|
x1
x10
=
x10
}
x3
x4
x6
x7
x9
⟶
x8
)
⟶
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
{x9 ∈
x0
|
x1
x9
=
x9
}
)
⟶
x5
∈
x0
⟶
(
∀ x8 .
x8
∈
x0
⟶
x1
x8
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x8
=
x6
(
x1
x8
)
(
x7
x5
(
x2
x8
)
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x1
x8
=
x1
x9
⟶
x2
x8
=
x2
x9
⟶
x8
=
x9
)
⟶
x6
(
x7
x5
x5
)
x4
=
x3
⟶
explicit_Complex
x0
x1
x2
x3
x4
x5
x6
x7
(proof)