Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr9FA..
/
4ad80..
PUNMe..
/
313c6..
vout
Pr9FA..
/
7bb41..
19.99 bars
TMNg8..
/
171c4..
ownership of
96b23..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRxT..
/
0be09..
ownership of
268f0..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMY35..
/
3fd6d..
ownership of
76534..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYhy..
/
9aff5..
ownership of
eab12..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMau3..
/
3bc47..
ownership of
5e130..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHe1..
/
47dc8..
ownership of
ac014..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXm1..
/
d5eac..
ownership of
4da66..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGdZ..
/
79c8f..
ownership of
21d90..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFrB..
/
9d8fe..
ownership of
5c0c7..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMV9L..
/
8b01a..
ownership of
409e2..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZXn..
/
6a42f..
ownership of
8d1a3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWcM..
/
c9529..
ownership of
9cb32..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMaCB..
/
cb533..
ownership of
5c835..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTVD..
/
3525c..
ownership of
71586..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFLG..
/
e4bda..
ownership of
cc20f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWNc..
/
6cb69..
ownership of
81b69..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMG8c..
/
932d8..
ownership of
6c32d..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWNa..
/
03438..
ownership of
bf3f6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTpJ..
/
8f356..
ownership of
cddbc..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYYz..
/
cd7b2..
ownership of
c3141..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSui..
/
165e9..
ownership of
e4a26..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMdwA..
/
e352c..
ownership of
148a1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGDx..
/
c1b5c..
ownership of
da9a6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYDL..
/
6b626..
ownership of
3c1cf..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJph..
/
cb0e9..
ownership of
e00e5..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMd7..
/
60b9a..
ownership of
853f4..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKQf..
/
4169d..
ownership of
be535..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMcxw..
/
491d6..
ownership of
6c4aa..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKFU..
/
e319a..
ownership of
51ce1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbdd..
/
fa367..
ownership of
6c476..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMN5Y..
/
54ea5..
ownership of
4d074..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMdGd..
/
2c9b1..
ownership of
a3ba1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLtc..
/
9e673..
ownership of
3e626..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXQD..
/
bd110..
ownership of
80e22..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZjQ..
/
fe924..
ownership of
1c1fb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRhn..
/
46214..
ownership of
b0586..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMa5h..
/
2338e..
ownership of
bacb8..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRfn..
/
68143..
ownership of
f814a..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNQk..
/
49f98..
ownership of
2c816..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFAm..
/
5dd41..
ownership of
f8965..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMcec..
/
39883..
ownership of
f91df..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUVE..
/
e3308..
ownership of
eea7f..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYcE..
/
2cae4..
ownership of
7a10c..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMctG..
/
60713..
ownership of
0020d..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYM3..
/
1caf4..
ownership of
499c1..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PUefP..
/
8d9f2..
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
explicit_Nats
explicit_Nats
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
and
(
and
(
x1
∈
x0
)
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
)
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
x1
⟶
∀ x4 : ο .
x4
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
)
Known
and5I
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
explicit_Nats_I
explicit_Nats_I
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
x1
∈
x0
⟶
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
x1
⟶
∀ x4 : ο .
x4
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
)
⟶
explicit_Nats
x0
x1
x2
(proof)
Known
and5E
and5E
:
∀ x0 x1 x2 x3 x4 : ο .
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
)
⟶
x5
Theorem
explicit_Nats_E
explicit_Nats_E
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 : ο .
(
explicit_Nats
x0
x1
x2
⟶
x1
∈
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x0
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 :
ι → ο
.
x4
x1
⟶
(
∀ x5 .
x4
x5
⟶
x4
(
x2
x5
)
)
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
)
⟶
x3
)
⟶
explicit_Nats
x0
x1
x2
⟶
x3
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
explicit_Nats_ind
explicit_Nats_ind
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
(proof)
Param
omega
omega
:
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Known
e4648..
:
0
∈
omega
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Definition
nat_p
nat_p
:=
λ x0 .
∀ x1 :
ι → ο
.
x1
0
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
ordsucc
x2
)
)
⟶
x1
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
explicit_Nats_omega
explicit_Nats_omega
:
explicit_Nats
omega
0
ordsucc
(proof)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Theorem
explicit_Nats_transfer
explicit_Nats_transfer
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 x4 .
∀ x5 x6 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
bij
x0
x3
x6
⟶
x6
x1
=
x4
⟶
(
∀ x7 .
x7
∈
x0
⟶
x6
(
x2
x7
)
=
x5
(
x6
x7
)
)
⟶
explicit_Nats
x3
x4
x5
(proof)
Definition
explicit_Field
explicit_Field
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
)
(
x1
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
)
(
x2
∈
x0
)
)
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
Known
and7I
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Theorem
explicit_Field_I
explicit_Field_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
x1
∈
x0
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_Field
x0
x1
x2
x3
x4
(proof)
Known
and7E
and7E
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
⟶
∀ x7 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
)
⟶
x7
Theorem
explicit_Field_E
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
(proof)
Definition
explicit_Field_minus
explicit_Field_minus
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 .
prim0
(
λ x6 .
and
(
x6
∈
x0
)
(
x3
x5
x6
=
x1
)
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
explicit_Field_minus_prop
explicit_Field_minus_prop
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
and
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
∈
x0
)
(
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
)
(proof)
Theorem
explicit_Field_minus_clos
explicit_Field_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
∈
x0
(proof)
Theorem
explicit_Field_minus_R
explicit_Field_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
(proof)
Theorem
explicit_Field_minus_L
explicit_Field_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x5
=
x1
(proof)
Theorem
explicit_Field_plus_cancelL
explicit_Field_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
(proof)
Theorem
explicit_Field_plus_cancelR
explicit_Field_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
(proof)
Theorem
explicit_Field_minus_invol
explicit_Field_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x5
(proof)
Theorem
explicit_Field_minus_one_In
explicit_Field_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x2
∈
x0
(proof)
Theorem
explicit_Field_zero_multR
explicit_Field_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
x1
=
x1
(proof)
Theorem
explicit_Field_zero_multL
explicit_Field_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x1
x5
=
x1
(proof)
Theorem
explicit_Field_minus_mult
explicit_Field_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
=
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x5
(proof)
Theorem
explicit_Field_minus_one_square
explicit_Field_minus_one_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
=
x2
(proof)
Theorem
explicit_Field_minus_square
explicit_Field_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x4
x5
x5
(proof)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
explicit_OrderedField
explicit_OrderedField
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
and
(
and
(
and
(
and
(
and
(
explicit_Field
x0
x1
x2
x3
x4
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
iff
(
and
(
x5
x6
x7
)
(
x5
x7
x6
)
)
(
x6
=
x7
)
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
or
(
x5
x6
x7
)
(
x5
x7
x6
)
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
(
x3
x6
x8
)
(
x3
x7
x8
)
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x5
x1
(
x4
x6
x7
)
)
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Theorem
explicit_OrderedField_I
explicit_OrderedField_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
iff
(
and
(
x5
x6
x7
)
(
x5
x7
x6
)
)
(
x6
=
x7
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
or
(
x5
x6
x7
)
(
x5
x7
x6
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
(
x3
x6
x8
)
(
x3
x7
x8
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x5
x1
(
x4
x6
x7
)
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
(proof)
Known
and6E
and6E
:
∀ x0 x1 x2 x3 x4 x5 : ο .
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
⟶
∀ x6 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
)
⟶
x6
Theorem
explicit_OrderedField_E
explicit_OrderedField_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x5
x7
x8
⟶
x5
x8
x9
⟶
x5
x7
x9
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
iff
(
and
(
x5
x7
x8
)
(
x5
x8
x7
)
)
(
x7
=
x8
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
or
(
x5
x7
x8
)
(
x5
x8
x7
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x5
x7
x8
⟶
x5
(
x3
x7
x9
)
(
x3
x8
x9
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x1
x7
⟶
x5
x1
x8
⟶
x5
x1
(
x4
x7
x8
)
)
⟶
x6
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
(proof)
Definition
lt
lt
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 x7 .
and
(
x5
x6
x7
)
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
Definition
natOfOrderedField_p
natOfOrderedField_p
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 .
∀ x7 :
ι → ο
.
x7
x1
⟶
(
∀ x8 .
x7
x8
⟶
x7
(
x3
x8
x2
)
)
⟶
x7
x6
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Theorem
explicit_Nats_natOfOrderedField
explicit_Nats_natOfOrderedField
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Nats
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
x1
(
λ x6 .
x3
x6
x2
)
(proof)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
explicit_Reals
explicit_Reals
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
and
(
and
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x7
(
x4
x9
x6
)
)
⟶
x8
)
⟶
x8
)
)
(
∀ x6 .
x6
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x8 .
x8
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x6
x8
)
(
ap
x7
x8
)
)
(
x5
(
ap
x6
x8
)
(
ap
x6
(
x3
x8
x2
)
)
)
)
(
x5
(
ap
x7
(
x3
x8
x2
)
)
(
ap
x7
x8
)
)
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
x0
)
(
∀ x10 .
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x6
x10
)
x9
)
(
x5
x9
(
ap
x7
x10
)
)
)
⟶
x8
)
⟶
x8
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
explicit_Reals_I
explicit_Reals_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x7
(
x4
x9
x6
)
)
⟶
x8
)
⟶
x8
)
⟶
(
∀ x6 .
x6
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x8 .
x8
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x6
x8
)
(
ap
x7
x8
)
)
(
x5
(
ap
x6
x8
)
(
ap
x6
(
x3
x8
x2
)
)
)
)
(
x5
(
ap
x7
(
x3
x8
x2
)
)
(
ap
x7
x8
)
)
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
x0
)
(
∀ x10 .
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x6
x10
)
x9
)
(
x5
x9
(
ap
x7
x10
)
)
)
⟶
x8
)
⟶
x8
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
(proof)
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
explicit_Reals_E
explicit_Reals_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x7
⟶
x5
x1
x8
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x8
(
x4
x10
x7
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x8 .
x8
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x9 .
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x7
x9
)
(
ap
x8
x9
)
)
(
x5
(
ap
x7
x9
)
(
ap
x7
(
x3
x9
x2
)
)
)
)
(
x5
(
ap
x8
(
x3
x9
x2
)
)
(
ap
x8
x9
)
)
)
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x0
)
(
∀ x11 .
x11
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x7
x11
)
x10
)
(
x5
x10
(
ap
x8
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
x6
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
x6
(proof)
Theorem
explicit_Field_transfer
explicit_Field_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 x7 .
∀ x8 x9 :
ι →
ι → ι
.
∀ x10 :
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
bij
x0
x5
x10
⟶
x10
x1
=
x6
⟶
x10
x2
=
x7
⟶
(
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x10
(
x3
x11
x12
)
=
x8
(
x10
x11
)
(
x10
x12
)
)
⟶
(
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x10
(
x4
x11
x12
)
=
x9
(
x10
x11
)
(
x10
x12
)
)
⟶
explicit_Field
x5
x6
x7
x8
x9
(proof)
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
explicit_OrderedField_transfer
explicit_OrderedField_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
explicit_OrderedField
x6
x7
x8
x9
x10
x11
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Theorem
explicit_Reals_transfer
explicit_Reals_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
explicit_Reals
x6
x7
x8
x9
x10
x11
(proof)
Definition
explicit_Complex
explicit_Complex
:=
λ x0 .
λ x1 x2 :
ι → ι
.
λ x3 x4 x5 .
λ x6 x7 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
explicit_Field
x0
x3
x4
x6
x7
)
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ο
.
explicit_Reals
{x10 ∈
x0
|
x1
x10
=
x10
}
x3
x4
x6
x7
x9
⟶
x8
)
⟶
x8
)
)
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
{x9 ∈
x0
|
x1
x9
=
x9
}
)
)
(
x5
∈
x0
)
)
(
∀ x8 .
x8
∈
x0
⟶
x1
x8
∈
x0
)
)
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
x0
)
)
(
∀ x8 .
x8
∈
x0
⟶
x8
=
x6
(
x1
x8
)
(
x7
x5
(
x2
x8
)
)
)
)
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x1
x8
=
x1
x9
⟶
x2
x8
=
x2
x9
⟶
x8
=
x9
)
)
(
x6
(
x7
x5
x5
)
x4
=
x3
)
Theorem
explicit_Complex_I
explicit_Complex_I
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 x5 .
∀ x6 x7 :
ι →
ι → ι
.
explicit_Field
x0
x3
x4
x6
x7
⟶
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ο
.
explicit_Reals
{x10 ∈
x0
|
x1
x10
=
x10
}
x3
x4
x6
x7
x9
⟶
x8
)
⟶
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
{x9 ∈
x0
|
x1
x9
=
x9
}
)
⟶
x5
∈
x0
⟶
(
∀ x8 .
x8
∈
x0
⟶
x1
x8
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x8
=
x6
(
x1
x8
)
(
x7
x5
(
x2
x8
)
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x1
x8
=
x1
x9
⟶
x2
x8
=
x2
x9
⟶
x8
=
x9
)
⟶
x6
(
x7
x5
x5
)
x4
=
x3
⟶
explicit_Complex
x0
x1
x2
x3
x4
x5
x6
x7
(proof)