Search for blocks/addresses/...

Proofgold Asset

asset id
6396c1ce56ca3a7116207021c9bb3558f8ccff6763c15f450b1dbc10645f5d6b
asset hash
ac22169553afc4926d24f3d66ac82e36cc4a9a8a50ecfefedc4d579e1f3c426e
bday / block
3938
tx
1ad4e..
preasset
doc published by PrGxv..
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition Subq := λ x0 x1 . ∀ x2 . prim1 x2 x0prim1 x2 x1
Definition TransSet := λ x0 . ∀ x1 . prim1 x1 x0Subq x1 x0
Definition ordinal := λ x0 . and (TransSet x0) (∀ x1 . prim1 x1 x0TransSet x1)
Param bc82c.. : ιιι
Param 80242.. : ιο
Known f3bd7.. : ∀ x0 x1 . 80242.. x080242.. x1bc82c.. x0 x1 = bc82c.. x1 x0
Known cbcc4.. : ∀ x0 . ordinal x0∀ x1 . ordinal x1∀ x2 . prim1 x2 x0prim1 (bc82c.. x2 x1) (bc82c.. x0 x1)
Known e3ccf.. : ∀ x0 . ordinal x080242.. x0
Known ordinal_Hered : ∀ x0 . ordinal x0∀ x1 . prim1 x1 x0ordinal x1
Theorem c2a6e.. : ∀ x0 . ordinal x0∀ x1 . ordinal x1∀ x2 . prim1 x2 x1prim1 (bc82c.. x0 x2) (bc82c.. x0 x1) (proof)
Param 48ef8.. : ι
Param 616bf.. : ιιι
Param ba9d8.. : ιο
Known c2711.. : ∀ x0 . prim1 x0 48ef8..ba9d8.. x0
Param 4a7ef.. : ι
Param 4ae4a.. : ιι
Known 5c211.. : ∀ x0 : ι → ο . x0 4a7ef..(∀ x1 . ba9d8.. x1x0 x1x0 (4ae4a.. x1))∀ x1 . ba9d8.. x1x0 x1
Known 97325.. : ∀ x0 . 80242.. x0bc82c.. x0 4a7ef.. = x0
Known f30c5.. : ∀ x0 . 616bf.. x0 4a7ef.. = x0
Known 9b91e.. : ∀ x0 . ordinal x0∀ x1 . ordinal x1bc82c.. x0 (4ae4a.. x1) = 4ae4a.. (bc82c.. x0 x1)
Known f3fb5.. : ∀ x0 . ba9d8.. x0ordinal x0
Known 1c625.. : ∀ x0 x1 . ba9d8.. x1616bf.. x0 (4ae4a.. x1) = 4ae4a.. (616bf.. x0 x1)
Theorem a1176.. : ∀ x0 . prim1 x0 48ef8..∀ x1 . prim1 x1 48ef8..616bf.. x0 x1 = bc82c.. x0 x1 (proof)
Known a3321.. : ∀ x0 . ba9d8.. x0prim1 x0 48ef8..
Known 4183e.. : ∀ x0 . ba9d8.. x0∀ x1 . ba9d8.. x1ba9d8.. (616bf.. x0 x1)
Theorem 2a532.. : ∀ x0 . prim1 x0 48ef8..∀ x1 . prim1 x1 48ef8..prim1 (bc82c.. x0 x1) 48ef8.. (proof)
Known 47c39.. : ∀ x0 x1 x2 . 80242.. x080242.. x180242.. x2bc82c.. x0 x1 = bc82c.. x0 x2x1 = x2
Theorem ef0df.. : ∀ x0 x1 x2 . 80242.. x080242.. x180242.. x2bc82c.. x0 x1 = bc82c.. x2 x1x0 = x2 (proof)
Param e4431.. : ιι
Param 56ded.. : ιι
Known 9ec10.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . 80242.. x180242.. x2(∀ x3 . prim1 x3 (56ded.. (e4431.. x1))x0 x3 x2)(∀ x3 . prim1 x3 (56ded.. (e4431.. x2))x0 x1 x3)(∀ x3 . prim1 x3 (56ded.. (e4431.. x1))∀ x4 . prim1 x4 (56ded.. (e4431.. x2))x0 x3 x4)x0 x1 x2)∀ x1 x2 . 80242.. x180242.. x2x0 x1 x2
Param 02a50.. : ιιι
Param 0ac37.. : ιιι
Param 94f9e.. : ι(ιι) → ι
Param 23e07.. : ιι
Param 5246e.. : ιι
Known 8a8cc.. : ∀ x0 . 80242.. x0∀ x1 . 80242.. x1bc82c.. x0 x1 = 02a50.. (0ac37.. (94f9e.. (23e07.. x0) (λ x3 . bc82c.. x3 x1)) (94f9e.. (23e07.. x1) (bc82c.. x0))) (0ac37.. (94f9e.. (5246e.. x0) (λ x3 . bc82c.. x3 x1)) (94f9e.. (5246e.. x1) (bc82c.. x0)))
Param 02b90.. : ιιο
Param a842e.. : ι(ιι) → ι
Param 099f3.. : ιιο
Param SNoEq_ : ιιιο
Known 9ecaa.. : ∀ x0 x1 . 02b90.. x0 x1∀ x2 : ο . (80242.. (02a50.. x0 x1)prim1 (e4431.. (02a50.. x0 x1)) (4ae4a.. (0ac37.. (a842e.. x0 (λ x3 . 4ae4a.. (e4431.. x3))) (a842e.. x1 (λ x3 . 4ae4a.. (e4431.. x3)))))(∀ x3 . prim1 x3 x0099f3.. x3 (02a50.. x0 x1))(∀ x3 . prim1 x3 x1099f3.. (02a50.. x0 x1) x3)(∀ x3 . 80242.. x3(∀ x4 . prim1 x4 x0099f3.. x4 x3)(∀ x4 . prim1 x4 x1099f3.. x3 x4)and (Subq (e4431.. (02a50.. x0 x1)) (e4431.. x3)) (SNoEq_ (e4431.. (02a50.. x0 x1)) (02a50.. x0 x1) x3))x2)x2
Known Subq_tra : ∀ x0 x1 x2 . Subq x0 x1Subq x1 x2Subq x0 x2
Known 011e9.. : ∀ x0 x1 x2 . Subq x0 x2Subq x1 x2Subq (0ac37.. x0 x1) x2
Known 9b5af.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 (a842e.. x0 x1)∀ x3 : ο . (∀ x4 . prim1 x4 x0prim1 x2 (x1 x4)x3)x3
Definition or := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known edd11.. : ∀ x0 x1 x2 . prim1 x2 (0ac37.. x0 x1)or (prim1 x2 x0) (prim1 x2 x1)
Known ordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (prim1 x0 x1) (Subq x1 x0)
Definition False := ∀ x0 : ο . x0
Known FalseE : False∀ x0 : ο . x0
Definition not := λ x0 : ο . x0False
Definition nIn := λ x0 x1 . not (prim1 x0 x1)
Known In_irref : ∀ x0 . nIn x0 x0
Known 4c9ee.. : ∀ x0 . 80242.. x0ordinal (e4431.. x0)
Known b71d0.. : ∀ x0 x1 . 80242.. x080242.. x180242.. (bc82c.. x0 x1)
Known 958ef.. : ∀ x0 x1 . prim1 x1 (4ae4a.. x0)or (prim1 x1 x0) (x1 = x0)
Known bba3d.. : ∀ x0 x1 . prim1 x0 x1nIn x1 x0
Known b72a3.. : ∀ x0 . ordinal x0ordinal (4ae4a.. x0)
Known 9aba9.. : ∀ x0 x1 . TransSet x1prim1 x0 (4ae4a.. x1)Subq x0 x1
Known 45024.. : ∀ x0 x1 . ordinal x0ordinal x1ordinal (0ac37.. x0 x1)
Known d5fb2.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . prim1 x2 x0ordinal (x1 x2))ordinal (a842e.. x0 x1)
Known 8c6f6.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 (94f9e.. x0 x1)∀ x3 : ο . (∀ x4 . prim1 x4 x0x2 = x1 x4x3)x3
Known e76d1.. : ∀ x0 . 80242.. x0∀ x1 . prim1 x1 (5246e.. x0)∀ x2 : ο . (80242.. x1prim1 (e4431.. x1) (e4431.. x0)099f3.. x0 x1x2)x2
Known f4ff0.. : ∀ x0 . Subq (5246e.. x0) (56ded.. (e4431.. x0))
Known cbec9.. : ∀ x0 . 80242.. x0∀ x1 . prim1 x1 (23e07.. x0)∀ x2 : ο . (80242.. x1prim1 (e4431.. x1) (e4431.. x0)099f3.. x1 x0x2)x2
Known e1ffe.. : ∀ x0 . Subq (23e07.. x0) (56ded.. (e4431.. x0))
Known fe60b.. : ∀ x0 x1 . 80242.. x080242.. x102b90.. (0ac37.. (94f9e.. (23e07.. x0) (λ x2 . bc82c.. x2 x1)) (94f9e.. (23e07.. x1) (bc82c.. x0))) (0ac37.. (94f9e.. (5246e.. x0) (λ x2 . bc82c.. x2 x1)) (94f9e.. (5246e.. x1) (bc82c.. x0)))
Known c5221.. : ∀ x0 . ordinal x0∀ x1 . ordinal x1ordinal (bc82c.. x0 x1)
Theorem da0a0.. : ∀ x0 x1 . 80242.. x080242.. x1Subq (e4431.. (bc82c.. x0 x1)) (bc82c.. (e4431.. x0) (e4431.. x1)) (proof)
Param 1beb9.. : ιιο
Known bfaa9.. : ∀ x0 . ordinal x0∀ x1 . prim1 x1 (56ded.. x0)∀ x2 : ο . (prim1 (e4431.. x1) x0ordinal (e4431.. x1)80242.. x11beb9.. (e4431.. x1) x1x2)x2
Known c8a5e.. : ordinal 48ef8..
Known ade9f.. : ∀ x0 . ordinal x0∀ x1 x2 . prim1 x2 x01beb9.. x2 x1prim1 x1 (56ded.. x0)
Known b0eab.. : ∀ x0 . 80242.. x01beb9.. (e4431.. x0) x0
Theorem 58e84.. : ∀ x0 . prim1 x0 (56ded.. 48ef8..)∀ x1 . prim1 x1 (56ded.. 48ef8..)prim1 (bc82c.. x0 x1) (56ded.. 48ef8..) (proof)
Param 8428d.. : ιι
Definition a470d.. := 0ac37.. 48ef8.. (94f9e.. 48ef8.. 8428d..)
Param 3b429.. : ι(ιι) → (ιιο) → CT2 ι
Param df931.. : ιιι
Definition efb37.. := 3b429.. a470d.. (λ x0 . 48ef8..) (λ x0 x1 . x1 = 4a7ef..∀ x2 : ο . x2) df931..
Param nat_primrec : ι(ιιι) → ιι
Param If_i : οιιι
Param e37c0.. : ιιι
Definition 5fbd5.. := λ x0 x1 . λ x2 : ι → ι . nat_primrec 4a7ef.. (λ x3 x4 . If_i (prim1 x3 x0) 4a7ef.. (e37c0.. (x2 x3) x4)) (4ae4a.. x1)
Param 7ce1c.. : ιιι
Definition b4fd2.. := λ x0 x1 . λ x2 : ι → ι . nat_primrec (4ae4a.. 4a7ef..) (λ x3 x4 . If_i (prim1 x3 x0) (4ae4a.. 4a7ef..) (7ce1c.. (x2 x3) x4)) (4ae4a.. x1)