Search for blocks/addresses/...
Proofgold Asset
asset id
c93fe645be9a41f25733fd9ab2059236cb17322be2a7567c85297d9e785702ec
asset hash
42e74bbf59bf3bd1e42113a5df5ec49b4738127338757e3272871c7a7e9786ac
bday / block
4903
tx
786b2..
preasset
doc published by
Pr6Pc..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Definition
empty_p
:=
λ x0 .
∀ x1 .
nIn
x1
x0
Definition
41dcb..
:=
λ x0 .
not
(
empty_p
x0
)
Definition
boolToProp
:=
prim1
0
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
propToBool
:=
λ x0 : ο .
If_i
x0
1
0
Param
nat_p
nat_p
:
ι
→
ο
Param
omega
omega
:
ι
Known
nat_0
nat_0
:
nat_p
0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Theorem
e4648..
:
0
∈
omega
(proof)
Theorem
30796..
:
41dcb..
omega
(proof)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
ap
ap
:
ι
→
ι
→
ι
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
67069..
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
(proof)
Theorem
69857..
:
∀ x0 x1 x2 x3 .
x3
∈
setexp
(
setexp
x2
x1
)
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x1
⟶
ap
(
ap
x3
x4
)
x5
∈
x2
(proof)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
799d0..
:
∀ x0 .
41dcb..
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
x1
)
⟶
x1
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
In_1_2
In_1_2
:
1
∈
2
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
In_0_2
In_0_2
:
0
∈
2
Theorem
3072f..
:
∀ x0 : ο .
propToBool
x0
∈
2
(proof)
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
7dcbe..
:
∀ x0 .
x0
∈
2
⟶
boolToProp
x0
⟶
x0
=
1
(proof)
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
9be3e..
:
∀ x0 .
x0
∈
2
⟶
not
(
boolToProp
x0
)
⟶
x0
=
0
(proof)
Theorem
a673a..
:
∀ x0 : ο .
x0
⟶
boolToProp
(
propToBool
x0
)
(proof)
Theorem
b1ad2..
:
∀ x0 : ο .
boolToProp
(
propToBool
x0
)
⟶
x0
(proof)