Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrHsm..
/
48463..
PUQ5Y..
/
8b89e..
vout
PrHsm..
/
fba2a..
0.00 bars
TMMaY..
/
4cc70..
ownership of
b1ad2..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbAs..
/
8211f..
ownership of
90c21..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYMf..
/
71cf1..
ownership of
a673a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMF2F..
/
a2114..
ownership of
69661..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQBH..
/
25d08..
ownership of
9be3e..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMVuk..
/
6f468..
ownership of
e1256..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXUX..
/
e53c5..
ownership of
7dcbe..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQP8..
/
da1ab..
ownership of
650da..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUZP..
/
38015..
ownership of
3072f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMZW..
/
c5a42..
ownership of
4df00..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFAc..
/
92034..
ownership of
799d0..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMST3..
/
d238c..
ownership of
69857..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHEk..
/
13740..
ownership of
2f455..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRzG..
/
c9322..
ownership of
67069..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPUE..
/
e11a6..
ownership of
09f31..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMdwf..
/
7da82..
ownership of
30796..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbw3..
/
4a757..
ownership of
dbddf..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJrp..
/
b391d..
ownership of
e4648..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMN2a..
/
5b43e..
ownership of
87d98..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUJo..
/
81c51..
ownership of
c98d0..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRJW..
/
e4f60..
ownership of
d3b96..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLtH..
/
bd4a5..
ownership of
2657e..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTxD..
/
ba8f4..
ownership of
560a2..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMaCS..
/
1e3d1..
ownership of
41dcb..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJFS..
/
229ed..
ownership of
93b6d..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PUha4..
/
c93fe..
doc published by
Pr6Pc..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Definition
empty_p
:=
λ x0 .
∀ x1 .
nIn
x1
x0
Definition
41dcb..
:=
λ x0 .
not
(
empty_p
x0
)
Definition
boolToProp
:=
prim1
0
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
propToBool
:=
λ x0 : ο .
If_i
x0
1
0
Param
nat_p
nat_p
:
ι
→
ο
Param
omega
omega
:
ι
Known
nat_0
nat_0
:
nat_p
0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Theorem
e4648..
:
0
∈
omega
(proof)
Theorem
30796..
:
41dcb..
omega
(proof)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
ap
ap
:
ι
→
ι
→
ι
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
67069..
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
(proof)
Theorem
69857..
:
∀ x0 x1 x2 x3 .
x3
∈
setexp
(
setexp
x2
x1
)
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x1
⟶
ap
(
ap
x3
x4
)
x5
∈
x2
(proof)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
799d0..
:
∀ x0 .
41dcb..
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
x1
)
⟶
x1
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
In_1_2
In_1_2
:
1
∈
2
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
In_0_2
In_0_2
:
0
∈
2
Theorem
3072f..
:
∀ x0 : ο .
propToBool
x0
∈
2
(proof)
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
7dcbe..
:
∀ x0 .
x0
∈
2
⟶
boolToProp
x0
⟶
x0
=
1
(proof)
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
9be3e..
:
∀ x0 .
x0
∈
2
⟶
not
(
boolToProp
x0
)
⟶
x0
=
0
(proof)
Theorem
a673a..
:
∀ x0 : ο .
x0
⟶
boolToProp
(
propToBool
x0
)
(proof)
Theorem
b1ad2..
:
∀ x0 : ο .
boolToProp
(
propToBool
x0
)
⟶
x0
(proof)