Search for blocks/addresses/...
Proofgold Asset
asset id
ce1fbd6aeea749b76a0850f1a1588d8bf7aeb55a2e78aecb5df46d11cee6564b
asset hash
528b2b0561fbb1dbca9f767d51aa5bf25e479abe4f671a634b4dbf40ce0b8eac
bday / block
9687
tx
63d1b..
preasset
doc published by
PrCx1..
Param
MetaFunctor
MetaFunctor
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Known
2cb62..
MetaFunctorI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 .
x0
x10
⟶
x4
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 .
x0
x10
⟶
x0
x11
⟶
x1
x10
x11
x12
⟶
x5
(
x8
x10
)
(
x8
x11
)
(
x9
x10
x11
x12
)
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x10
x10
(
x2
x10
)
=
x6
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 x13 x14 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x1
x10
x11
x13
⟶
x1
x11
x12
x14
⟶
x9
x10
x12
(
x3
x10
x11
x12
x14
x13
)
=
x7
(
x8
x10
)
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x14
)
(
x9
x10
x11
x13
)
)
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
Theorem
b7eb1..
MetaCat_IdFunctor
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaFunctor
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x4 .
x4
)
(
λ x4 x5 x6 .
x6
)
(proof)
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaFunctor_strict
MetaFunctor_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Known
5cbb4..
MetaFunctor_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
Theorem
2447d..
MetaCat_IdFunctor_strict
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaFunctor_strict
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x4 .
x4
)
(
λ x4 x5 x6 .
x6
)
(proof)
Known
973e2..
MetaFunctorE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
∀ x10 : ο .
(
(
∀ x11 .
x0
x11
⟶
x4
(
x8
x11
)
)
⟶
(
∀ x11 x12 x13 .
x0
x11
⟶
x0
x12
⟶
x1
x11
x12
x13
⟶
x5
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x13
)
)
⟶
(
∀ x11 .
x0
x11
⟶
x9
x11
x11
(
x2
x11
)
=
x6
(
x8
x11
)
)
⟶
(
∀ x11 x12 x13 x14 x15 .
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x1
x11
x12
x14
⟶
x1
x12
x13
x15
⟶
x9
x11
x13
(
x3
x11
x12
x13
x15
x14
)
=
x7
(
x8
x11
)
(
x8
x12
)
(
x8
x13
)
(
x9
x12
x13
x15
)
(
x9
x11
x12
x14
)
)
⟶
x10
)
⟶
x10
Theorem
d7211..
MetaCat_CompFunctors
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ο
.
∀ x9 :
ι →
ι →
ι → ο
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
∀ x13 :
ι →
ι →
ι → ι
.
∀ x14 :
ι → ι
.
∀ x15 :
ι →
ι →
ι → ι
.
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x12
x13
⟶
MetaFunctor
x4
x5
x6
x7
x8
x9
x10
x11
x14
x15
⟶
MetaFunctor
x0
x1
x2
x3
x8
x9
x10
x11
(
λ x16 .
x14
(
x12
x16
)
)
(
λ x16 x17 x18 .
x15
(
x12
x16
)
(
x12
x17
)
(
x13
x16
x17
x18
)
)
(proof)
Known
95305..
MetaFunctor_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
∀ x10 : ο .
(
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
x10
)
⟶
x10
Theorem
1eb28..
MetaCat_CompFunctors_strict
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ο
.
∀ x9 :
ι →
ι →
ι → ο
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
∀ x13 :
ι →
ι →
ι → ι
.
∀ x14 :
ι → ι
.
∀ x15 :
ι →
ι →
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x12
x13
⟶
MetaFunctor_strict
x4
x5
x6
x7
x8
x9
x10
x11
x14
x15
⟶
MetaFunctor_strict
x0
x1
x2
x3
x8
x9
x10
x11
(
λ x16 .
x14
(
x12
x16
)
)
(
λ x16 x17 x18 .
x15
(
x12
x16
)
(
x12
x17
)
(
x13
x16
x17
x18
)
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
MetaNatTrans
MetaNatTrans
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ο
.
λ x5 :
ι →
ι →
ι → ο
.
λ x6 :
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 :
ι → ι
.
λ x9 :
ι →
ι →
ι → ι
.
λ x10 :
ι → ι
.
λ x11 :
ι →
ι →
ι → ι
.
λ x12 :
ι → ι
.
and
(
∀ x13 .
x0
x13
⟶
x5
(
x8
x13
)
(
x10
x13
)
(
x12
x13
)
)
(
∀ x13 x14 x15 .
x0
x13
⟶
x0
x14
⟶
x1
x13
x14
x15
⟶
x7
(
x8
x13
)
(
x10
x13
)
(
x10
x14
)
(
x11
x13
x14
x15
)
(
x12
x13
)
=
x7
(
x8
x13
)
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
(
x9
x13
x14
x15
)
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
c1d68..
MetaNatTransI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
(
∀ x13 .
x0
x13
⟶
x5
(
x8
x13
)
(
x10
x13
)
(
x12
x13
)
)
⟶
(
∀ x13 x14 x15 .
x0
x13
⟶
x0
x14
⟶
x1
x13
x14
x15
⟶
x7
(
x8
x13
)
(
x10
x13
)
(
x10
x14
)
(
x11
x13
x14
x15
)
(
x12
x13
)
=
x7
(
x8
x13
)
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
(
x9
x13
x14
x15
)
)
⟶
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
(proof)
Theorem
aa53a..
MetaNatTransE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
(
(
∀ x14 .
x0
x14
⟶
x5
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
)
⟶
(
∀ x14 x15 x16 .
x0
x14
⟶
x0
x15
⟶
x1
x14
x15
x16
⟶
x7
(
x8
x14
)
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
(
x12
x14
)
=
x7
(
x8
x14
)
(
x8
x15
)
(
x10
x15
)
(
x12
x15
)
(
x9
x14
x15
x16
)
)
⟶
x13
)
⟶
x13
(proof)
Definition
MetaNatTrans_strict
MetaNatTrans_strict
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ο
.
λ x5 :
ι →
ι →
ι → ο
.
λ x6 :
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 :
ι → ι
.
λ x9 :
ι →
ι →
ι → ι
.
λ x10 :
ι → ι
.
λ x11 :
ι →
ι →
ι → ι
.
λ x12 :
ι → ι
.
and
(
and
(
and
(
and
(
MetaCat
x0
x1
x2
x3
)
(
MetaCat
x4
x5
x6
x7
)
)
(
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
)
)
(
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x10
x11
)
)
(
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
)
Known
and5I
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
59a37..
MetaNatTrans_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
MetaNatTrans_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
(proof)
Known
and5E
and5E
:
∀ x0 x1 x2 x3 x4 : ο .
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
)
⟶
x5
Theorem
b8f26..
MetaNatTrans_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
MetaNatTrans_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
(
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
x13
)
⟶
x13
(proof)
Theorem
d7aeb..
MetaCat_CompFunctorNatTrans
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ο
.
∀ x9 :
ι →
ι →
ι → ο
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
∀ x13 :
ι →
ι →
ι → ι
.
∀ x14 :
ι → ι
.
∀ x15 :
ι →
ι →
ι → ι
.
∀ x16 :
ι → ι
.
∀ x17 :
ι →
ι →
ι → ι
.
∀ x18 :
ι → ι
.
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x12
x13
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x14
x15
⟶
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x12
x13
x14
x15
x18
⟶
MetaFunctor
x4
x5
x6
x7
x8
x9
x10
x11
x16
x17
⟶
MetaNatTrans
x0
x1
x2
x3
x8
x9
x10
x11
(
λ x19 .
x16
(
x12
x19
)
)
(
λ x19 x20 x21 .
x17
(
x12
x19
)
(
x12
x20
)
(
x13
x19
x20
x21
)
)
(
λ x19 .
x16
(
x14
x19
)
)
(
λ x19 x20 x21 .
x17
(
x14
x19
)
(
x14
x20
)
(
x15
x19
x20
x21
)
)
(
λ x19 .
x17
(
x12
x19
)
(
x14
x19
)
(
x18
x19
)
)
(proof)
Theorem
b8a6b..
MetaCat_CompNatTransFunctor
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ο
.
∀ x9 :
ι →
ι →
ι → ο
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
∀ x13 :
ι →
ι →
ι → ι
.
∀ x14 :
ι → ι
.
∀ x15 :
ι →
ι →
ι → ι
.
∀ x16 :
ι → ι
.
∀ x17 :
ι →
ι →
ι → ι
.
∀ x18 :
ι → ι
.
MetaNatTrans
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x18
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x16
x17
⟶
MetaNatTrans
x0
x1
x2
x3
x8
x9
x10
x11
(
λ x19 .
x12
(
x16
x19
)
)
(
λ x19 x20 x21 .
x13
(
x16
x19
)
(
x16
x20
)
(
x17
x19
x20
x21
)
)
(
λ x19 .
x14
(
x16
x19
)
)
(
λ x19 x20 x21 .
x15
(
x16
x19
)
(
x16
x20
)
(
x17
x19
x20
x21
)
)
(
λ x19 .
x18
(
x16
x19
)
)
(proof)
Definition
MetaMonad
MetaMonad
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ι
.
λ x5 :
ι →
ι →
ι → ι
.
λ x6 x7 :
ι → ι
.
and
(
and
(
∀ x8 .
x0
x8
⟶
x3
(
x4
(
x4
(
x4
x8
)
)
)
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
(
x5
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
)
=
x3
(
x4
(
x4
(
x4
x8
)
)
)
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
(
x7
(
x4
x8
)
)
)
(
∀ x8 .
x0
x8
⟶
x3
(
x4
x8
)
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
(
x6
(
x4
x8
)
)
=
x2
(
x4
x8
)
)
)
(
∀ x8 .
x0
x8
⟶
x3
(
x4
x8
)
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
(
x5
x8
(
x4
x8
)
(
x6
x8
)
)
=
x2
(
x4
x8
)
)
Definition
MetaMonad_strict
MetaMonad_strict
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ι
.
λ x5 :
ι →
ι →
ι → ι
.
λ x6 x7 :
ι → ι
.
and
(
and
(
MetaNatTrans_strict
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x8 .
x8
)
(
λ x8 x9 x10 .
x10
)
x4
x5
x6
)
(
MetaNatTrans_strict
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x8 .
x4
(
x4
x8
)
)
(
λ x8 x9 x10 .
x5
(
x4
x8
)
(
x4
x9
)
(
x5
x8
x9
x10
)
)
x4
x5
x7
)
)
(
MetaMonad
x0
x1
x2
x3
x4
x5
x6
x7
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
46096..
MetaMonadI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
(
∀ x8 .
x0
x8
⟶
x3
(
x4
(
x4
(
x4
x8
)
)
)
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
(
x5
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
)
=
x3
(
x4
(
x4
(
x4
x8
)
)
)
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
(
x7
(
x4
x8
)
)
)
⟶
(
∀ x8 .
x0
x8
⟶
x3
(
x4
x8
)
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
(
x6
(
x4
x8
)
)
=
x2
(
x4
x8
)
)
⟶
(
∀ x8 .
x0
x8
⟶
x3
(
x4
x8
)
(
x4
(
x4
x8
)
)
(
x4
x8
)
(
x7
x8
)
(
x5
x8
(
x4
x8
)
(
x6
x8
)
)
=
x2
(
x4
x8
)
)
⟶
MetaMonad
x0
x1
x2
x3
x4
x5
x6
x7
(proof)
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
f4ba2..
MetaMonadE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
MetaMonad
x0
x1
x2
x3
x4
x5
x6
x7
⟶
∀ x8 : ο .
(
(
∀ x9 .
x0
x9
⟶
x3
(
x4
(
x4
(
x4
x9
)
)
)
(
x4
(
x4
x9
)
)
(
x4
x9
)
(
x7
x9
)
(
x5
(
x4
(
x4
x9
)
)
(
x4
x9
)
(
x7
x9
)
)
=
x3
(
x4
(
x4
(
x4
x9
)
)
)
(
x4
(
x4
x9
)
)
(
x4
x9
)
(
x7
x9
)
(
x7
(
x4
x9
)
)
)
⟶
(
∀ x9 .
x0
x9
⟶
x3
(
x4
x9
)
(
x4
(
x4
x9
)
)
(
x4
x9
)
(
x7
x9
)
(
x6
(
x4
x9
)
)
=
x2
(
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
x3
(
x4
x9
)
(
x4
(
x4
x9
)
)
(
x4
x9
)
(
x7
x9
)
(
x5
x9
(
x4
x9
)
(
x6
x9
)
)
=
x2
(
x4
x9
)
)
⟶
x8
)
⟶
x8
(proof)
Theorem
16309..
MetaMonad_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
MetaNatTrans_strict
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x8 .
x8
)
(
λ x8 x9 x10 .
x10
)
x4
x5
x6
⟶
MetaNatTrans_strict
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x8 .
x4
(
x4
x8
)
)
(
λ x8 x9 x10 .
x5
(
x4
x8
)
(
x4
x9
)
(
x5
x8
x9
x10
)
)
x4
x5
x7
⟶
MetaMonad
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaMonad_strict
x0
x1
x2
x3
x4
x5
x6
x7
(proof)
Theorem
80e83..
MetaMonad_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
MetaMonad_strict
x0
x1
x2
x3
x4
x5
x6
x7
⟶
∀ x8 : ο .
(
MetaNatTrans_strict
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x9 .
x9
)
(
λ x9 x10 x11 .
x11
)
x4
x5
x6
⟶
MetaNatTrans_strict
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x9 .
x4
(
x4
x9
)
)
(
λ x9 x10 x11 .
x5
(
x4
x9
)
(
x4
x10
)
(
x5
x9
x10
x11
)
)
x4
x5
x7
⟶
MetaMonad
x0
x1
x2
x3
x4
x5
x6
x7
⟶
x8
)
⟶
x8
(proof)
Definition
MetaAdjunction
MetaAdjunction
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ο
.
λ x5 :
ι →
ι →
ι → ο
.
λ x6 :
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 :
ι → ι
.
λ x9 :
ι →
ι →
ι → ι
.
λ x10 :
ι → ι
.
λ x11 :
ι →
ι →
ι → ι
.
λ x12 x13 :
ι → ι
.
and
(
∀ x14 .
x0
x14
⟶
x7
(
x8
x14
)
(
x8
(
x10
(
x8
x14
)
)
)
(
x8
x14
)
(
x13
(
x8
x14
)
)
(
x9
x14
(
x10
(
x8
x14
)
)
(
x12
x14
)
)
=
x6
(
x8
x14
)
)
(
∀ x14 .
x4
x14
⟶
x3
(
x10
x14
)
(
x10
(
x8
(
x10
x14
)
)
)
(
x10
x14
)
(
x11
(
x8
(
x10
x14
)
)
x14
(
x13
x14
)
)
(
x12
(
x10
x14
)
)
=
x2
(
x10
x14
)
)
Definition
MetaAdjunction_strict
MetaAdjunction_strict
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ο
.
λ x5 :
ι →
ι →
ι → ο
.
λ x6 :
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 :
ι → ι
.
λ x9 :
ι →
ι →
ι → ι
.
λ x10 :
ι → ι
.
λ x11 :
ι →
ι →
ι → ι
.
λ x12 x13 :
ι → ι
.
and
(
and
(
and
(
and
(
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
)
(
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
)
)
(
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
(
λ x14 .
x10
(
x8
x14
)
)
(
λ x14 x15 x16 .
x11
(
x8
x14
)
(
x8
x15
)
(
x9
x14
x15
x16
)
)
x12
)
)
(
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x14 .
x8
(
x10
x14
)
)
(
λ x14 x15 x16 .
x9
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
)
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
x13
)
)
(
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
)
Theorem
fd494..
MetaAdjunctionI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
(
∀ x14 .
x0
x14
⟶
x7
(
x8
x14
)
(
x8
(
x10
(
x8
x14
)
)
)
(
x8
x14
)
(
x13
(
x8
x14
)
)
(
x9
x14
(
x10
(
x8
x14
)
)
(
x12
x14
)
)
=
x6
(
x8
x14
)
)
⟶
(
∀ x14 .
x4
x14
⟶
x3
(
x10
x14
)
(
x10
(
x8
(
x10
x14
)
)
)
(
x10
x14
)
(
x11
(
x8
(
x10
x14
)
)
x14
(
x13
x14
)
)
(
x12
(
x10
x14
)
)
=
x2
(
x10
x14
)
)
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
(proof)
Theorem
e6292..
MetaAdjunctionE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
(
∀ x15 .
x0
x15
⟶
x7
(
x8
x15
)
(
x8
(
x10
(
x8
x15
)
)
)
(
x8
x15
)
(
x13
(
x8
x15
)
)
(
x9
x15
(
x10
(
x8
x15
)
)
(
x12
x15
)
)
=
x6
(
x8
x15
)
)
⟶
(
∀ x15 .
x4
x15
⟶
x3
(
x10
x15
)
(
x10
(
x8
(
x10
x15
)
)
)
(
x10
x15
)
(
x11
(
x8
(
x10
x15
)
)
x15
(
x13
x15
)
)
(
x12
(
x10
x15
)
)
=
x2
(
x10
x15
)
)
⟶
x14
)
⟶
x14
(proof)
Theorem
d6aa5..
MetaAdjunction_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
(
λ x14 .
x10
(
x8
x14
)
)
(
λ x14 x15 x16 .
x11
(
x8
x14
)
(
x8
x15
)
(
x9
x14
x15
x16
)
)
x12
⟶
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x14 .
x8
(
x10
x14
)
)
(
λ x14 x15 x16 .
x9
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
)
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
x13
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
(proof)
Theorem
29671..
MetaAdjunction_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x15 .
x15
)
(
λ x15 x16 x17 .
x17
)
(
λ x15 .
x10
(
x8
x15
)
)
(
λ x15 x16 x17 .
x11
(
x8
x15
)
(
x8
x16
)
(
x9
x15
x16
x17
)
)
x12
⟶
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x15 .
x8
(
x10
x15
)
)
(
λ x15 x16 x17 .
x9
(
x10
x15
)
(
x10
x16
)
(
x11
x15
x16
x17
)
)
(
λ x15 .
x15
)
(
λ x15 x16 x17 .
x17
)
x13
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
x14
)
⟶
x14
(proof)
Theorem
db40a..
MetaAdjunctionMonad
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
(
λ x14 .
x10
(
x8
x14
)
)
(
λ x14 x15 x16 .
x11
(
x8
x14
)
(
x8
x15
)
(
x9
x14
x15
x16
)
)
x12
⟶
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x14 .
x8
(
x10
x14
)
)
(
λ x14 x15 x16 .
x9
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
)
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
x13
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
MetaMonad
x0
x1
x2
x3
(
λ x14 .
x10
(
x8
x14
)
)
(
λ x14 x15 x16 .
x11
(
x8
x14
)
(
x8
x15
)
(
x9
x14
x15
x16
)
)
x12
(
λ x14 .
x11
(
x8
(
x10
(
x8
x14
)
)
)
(
x8
x14
)
(
x13
(
x8
x14
)
)
)
(proof)
Theorem
07be6..
MetaAdjunctionMonad_strict
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
MetaMonad_strict
x0
x1
x2
x3
(
λ x14 .
x10
(
x8
x14
)
)
(
λ x14 x15 x16 .
x11
(
x8
x14
)
(
x8
x15
)
(
x9
x14
x15
x16
)
)
x12
(
λ x14 .
x11
(
x8
(
x10
(
x8
x14
)
)
)
(
x8
x14
)
(
x13
(
x8
x14
)
)
)
(proof)