vout |
---|
PrGh2../cc98b.. 0.34 barsTMTWu../38427.. ownership of 07be6.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMZvW../ed45a.. ownership of 8f71a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMSKM../9634e.. ownership of db40a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMMMe../1b7e2.. ownership of 19ca6.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMKRJ../1c6f4.. ownership of 29671.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMcRZ../24afa.. ownership of 9a5dd.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMZou../d84c8.. ownership of d6aa5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMSYy../e23ef.. ownership of 71252.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMWhd../97eda.. ownership of e6292.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMaJE../2ea27.. ownership of 67ed4.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMVR4../96301.. ownership of fd494.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMFxU../e140a.. ownership of 1ed38.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMLeA../7959c.. ownership of 80e83.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMUmg../d8a95.. ownership of 84fe0.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMVV1../2110f.. ownership of 16309.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMMTD../221c6.. ownership of 73fd1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMLQQ../8e2e1.. ownership of f4ba2.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMJKr../536c3.. ownership of 40a66.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMSFk../240be.. ownership of 46096.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMUja../4ca68.. ownership of 7671e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMPPc../d81c0.. ownership of b8a6b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMXNf../f1f6d.. ownership of b7392.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMbaB../22344.. ownership of d7aeb.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMYv7../21d5a.. ownership of e1978.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMcbV../211af.. ownership of b8f26.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMNSG../e57b1.. ownership of db032.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMP9z../a98b3.. ownership of 59a37.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMVQi../a844a.. ownership of fea59.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMU3W../57e84.. ownership of aa53a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMcTv../11cba.. ownership of 60c5d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMUZP../326e8.. ownership of c1d68.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMKpA../6291a.. ownership of 8286b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMEtt../692e8.. ownership of 1eb28.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMbi4../c207a.. ownership of 7ad5e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMFSV../59899.. ownership of d7211.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMZiP../f8aa7.. ownership of 83025.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMbZW../9a813.. ownership of 2447d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMUGC../00a43.. ownership of 73c67.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMWRE../6f368.. ownership of b7eb1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMT5P../e91d0.. ownership of ee743.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMdHD../b0ac3.. ownership of 3ab94.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMaZj../aca06.. ownership of c8ed7.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMHao../f36b8.. ownership of bda63.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMdQ5../21aab.. ownership of e8b6c.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMdSd../e7f52.. ownership of ce28f.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMYrY../10242.. ownership of 8e3f5.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMNZs../6599f.. ownership of 7c9f9.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMWiQ../92a73.. ownership of bb95d.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMUAi../67f43.. ownership of bd2de.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMQLy../2b6a1.. ownership of 1b6ee.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMYtD../95dae.. ownership of 08be8.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0TMLMd../778d6.. ownership of cf0ad.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0PULdK../ce1fb.. doc published by PrCx1..Param MetaFunctorMetaFunctor : (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ι) → (ι → ι → ι → ι) → οKnown 2cb62..MetaFunctorI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . (∀ x10 . x0 x10 ⟶ x4 (x8 x10)) ⟶ (∀ x10 x11 x12 . x0 x10 ⟶ x0 x11 ⟶ x1 x10 x11 x12 ⟶ x5 (x8 x10) (x8 x11) (x9 x10 x11 x12)) ⟶ (∀ x10 . x0 x10 ⟶ x9 x10 x10 (x2 x10) = x6 (x8 x10)) ⟶ (∀ x10 x11 x12 x13 x14 . x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x10 x11 x13 ⟶ x1 x11 x12 x14 ⟶ x9 x10 x12 (x3 x10 x11 x12 x14 x13) = x7 (x8 x10) (x8 x11) (x8 x12) (x9 x11 x12 x14) (x9 x10 x11 x13)) ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9Theorem b7eb1..MetaCat_IdFunctor : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaFunctor x0 x1 x2 x3 x0 x1 x2 x3 (λ x4 . x4) (λ x4 x5 x6 . x6) (proof)Param MetaCatMetaCat : (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → οParam MetaFunctor_strictMetaFunctor_strict : (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ι) → (ι → ι → ι → ι) → οKnown 5cbb4..MetaFunctor_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaCat x0 x1 x2 x3 ⟶ MetaCat x4 x5 x6 x7 ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9Theorem 2447d..MetaCat_IdFunctor_strict : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3 ⟶ MetaFunctor_strict x0 x1 x2 x3 x0 x1 x2 x3 (λ x4 . x4) (λ x4 x5 x6 . x6) (proof)Known 973e2..MetaFunctorE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ ∀ x10 : ο . ((∀ x11 . x0 x11 ⟶ x4 (x8 x11)) ⟶ (∀ x11 x12 x13 . x0 x11 ⟶ x0 x12 ⟶ x1 x11 x12 x13 ⟶ x5 (x8 x11) (x8 x12) (x9 x11 x12 x13)) ⟶ (∀ x11 . x0 x11 ⟶ x9 x11 x11 (x2 x11) = x6 (x8 x11)) ⟶ (∀ x11 x12 x13 x14 x15 . x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x11 x12 x14 ⟶ x1 x12 x13 x15 ⟶ x9 x11 x13 (x3 x11 x12 x13 x15 x14) = x7 (x8 x11) (x8 x12) (x8 x13) (x9 x12 x13 x15) (x9 x11 x12 x14)) ⟶ x10) ⟶ x10Theorem d7211..MetaCat_CompFunctors : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ο . ∀ x9 : ι → ι → ι → ο . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι → ι → ι . ∀ x12 : ι → ι . ∀ x13 : ι → ι → ι → ι . ∀ x14 : ι → ι . ∀ x15 : ι → ι → ι → ι . MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x12 x13 ⟶ MetaFunctor x4 x5 x6 x7 x8 x9 x10 x11 x14 x15 ⟶ MetaFunctor x0 x1 x2 x3 x8 x9 x10 x11 (λ x16 . x14 (x12 x16)) (λ x16 x17 x18 . x15 (x12 x16) (x12 x17) (x13 x16 x17 x18)) (proof)Known 95305..MetaFunctor_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ ∀ x10 : ο . (MetaCat x0 x1 x2 x3 ⟶ MetaCat x4 x5 x6 x7 ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ x10) ⟶ x10Theorem 1eb28..MetaCat_CompFunctors_strict : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ο . ∀ x9 : ι → ι → ι → ο . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι → ι → ι . ∀ x12 : ι → ι . ∀ x13 : ι → ι → ι → ι . ∀ x14 : ι → ι . ∀ x15 : ι → ι → ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x12 x13 ⟶ MetaFunctor_strict x4 x5 x6 x7 x8 x9 x10 x11 x14 x15 ⟶ MetaFunctor_strict x0 x1 x2 x3 x8 x9 x10 x11 (λ x16 . x14 (x12 x16)) (λ x16 x17 x18 . x15 (x12 x16) (x12 x17) (x13 x16 x17 x18)) (proof)Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition MetaNatTransMetaNatTrans := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ο . λ x5 : ι → ι → ι → ο . λ x6 : ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 : ι → ι . λ x9 : ι → ι → ι → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . λ x12 : ι → ι . and (∀ x13 . x0 x13 ⟶ x5 (x8 x13) (x10 x13) (x12 x13)) (∀ x13 x14 x15 . x0 x13 ⟶ x0 x14 ⟶ x1 x13 x14 x15 ⟶ x7 (x8 x13) (x10 x13) (x10 x14) (x11 x13 x14 x15) (x12 x13) = x7 (x8 x13) (x8 x14) (x10 x14) (x12 x14) (x9 x13 x14 x15))Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Theorem c1d68..MetaNatTransI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . (∀ x13 . x0 x13 ⟶ x5 (x8 x13) (x10 x13) (x12 x13)) ⟶ (∀ x13 x14 x15 . x0 x13 ⟶ x0 x14 ⟶ x1 x13 x14 x15 ⟶ x7 (x8 x13) (x10 x13) (x10 x14) (x11 x13 x14 x15) (x12 x13) = x7 (x8 x13) (x8 x14) (x10 x14) (x12 x14) (x9 x13 x14 x15)) ⟶ MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 (proof)Theorem aa53a..MetaNatTransE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . ((∀ x14 . x0 x14 ⟶ x5 (x8 x14) (x10 x14) (x12 x14)) ⟶ (∀ x14 x15 x16 . x0 x14 ⟶ x0 x15 ⟶ x1 x14 x15 x16 ⟶ x7 (x8 x14) (x10 x14) (x10 x15) (x11 x14 x15 x16) (x12 x14) = x7 (x8 x14) (x8 x15) (x10 x15) (x12 x15) (x9 x14 x15 x16)) ⟶ x13) ⟶ x13 (proof)Definition MetaNatTrans_strictMetaNatTrans_strict := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ο . λ x5 : ι → ι → ι → ο . λ x6 : ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 : ι → ι . λ x9 : ι → ι → ι → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . λ x12 : ι → ι . and (and (and (and (MetaCat x0 x1 x2 x3) (MetaCat x4 x5 x6 x7)) (MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)) (MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x10 x11)) (MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12)Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ and (and (and (and x0 x1) x2) x3) x4Theorem 59a37..MetaNatTrans_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . MetaCat x0 x1 x2 x3 ⟶ MetaCat x4 x5 x6 x7 ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x10 x11 ⟶ MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ MetaNatTrans_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 (proof)Known and5Eand5E : ∀ x0 x1 x2 x3 x4 : ο . and (and (and (and x0 x1) x2) x3) x4 ⟶ ∀ x5 : ο . (x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5) ⟶ x5Theorem b8f26..MetaNatTrans_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . MetaNatTrans_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . (MetaCat x0 x1 x2 x3 ⟶ MetaCat x4 x5 x6 x7 ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x10 x11 ⟶ MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ x13) ⟶ x13 (proof)Theorem d7aeb..MetaCat_CompFunctorNatTrans : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ο . ∀ x9 : ι → ι → ι → ο . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι → ι → ι . ∀ x12 : ι → ι . ∀ x13 : ι → ι → ι → ι . ∀ x14 : ι → ι . ∀ x15 : ι → ι → ι → ι . ∀ x16 : ι → ι . ∀ x17 : ι → ι → ι → ι . ∀ x18 : ι → ι . MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x12 x13 ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x14 x15 ⟶ MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x12 x13 x14 x15 x18 ⟶ MetaFunctor x4 x5 x6 x7 x8 x9 x10 x11 x16 x17 ⟶ MetaNatTrans x0 x1 x2 x3 x8 x9 x10 x11 (λ x19 . x16 (x12 x19)) (λ x19 x20 x21 . x17 (x12 x19) (x12 x20) (x13 x19 x20 x21)) (λ x19 . x16 (x14 x19)) (λ x19 x20 x21 . x17 (x14 x19) (x14 x20) (x15 x19 x20 x21)) (λ x19 . x17 (x12 x19) (x14 x19) (x18 x19)) (proof)Theorem b8a6b..MetaCat_CompNatTransFunctor : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ο . ∀ x9 : ι → ι → ι → ο . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι → ι → ι . ∀ x12 : ι → ι . ∀ x13 : ι → ι → ι → ι . ∀ x14 : ι → ι . ∀ x15 : ι → ι → ι → ι . ∀ x16 : ι → ι . ∀ x17 : ι → ι → ι → ι . ∀ x18 : ι → ι . MetaNatTrans x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x18 ⟶ MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x16 x17 ⟶ MetaNatTrans x0 x1 x2 x3 x8 x9 x10 x11 (λ x19 . x12 (x16 x19)) (λ x19 x20 x21 . x13 (x16 x19) (x16 x20) (x17 x19 x20 x21)) (λ x19 . x14 (x16 x19)) (λ x19 x20 x21 . x15 (x16 x19) (x16 x20) (x17 x19 x20 x21)) (λ x19 . x18 (x16 x19)) (proof)Definition MetaMonadMetaMonad := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ι . λ x5 : ι → ι → ι → ι . λ x6 x7 : ι → ι . and (and (∀ x8 . x0 x8 ⟶ x3 (x4 (x4 (x4 x8))) (x4 (x4 x8)) (x4 x8) (x7 x8) (x5 (x4 (x4 x8)) (x4 x8) (x7 x8)) = x3 (x4 (x4 (x4 x8))) (x4 (x4 x8)) (x4 x8) (x7 x8) (x7 (x4 x8))) (∀ x8 . x0 x8 ⟶ x3 (x4 x8) (x4 (x4 x8)) (x4 x8) (x7 x8) (x6 (x4 x8)) = x2 (x4 x8))) (∀ x8 . x0 x8 ⟶ x3 (x4 x8) (x4 (x4 x8)) (x4 x8) (x7 x8) (x5 x8 (x4 x8) (x6 x8)) = x2 (x4 x8))Definition MetaMonad_strictMetaMonad_strict := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ι . λ x5 : ι → ι → ι → ι . λ x6 x7 : ι → ι . and (and (MetaNatTrans_strict x0 x1 x2 x3 x0 x1 x2 x3 (λ x8 . x8) (λ x8 x9 x10 . x10) x4 x5 x6) (MetaNatTrans_strict x0 x1 x2 x3 x0 x1 x2 x3 (λ x8 . x4 (x4 x8)) (λ x8 x9 x10 . x5 (x4 x8) (x4 x9) (x5 x8 x9 x10)) x4 x5 x7)) (MetaMonad x0 x1 x2 x3 x4 x5 x6 x7)Known and3Iand3I : ∀ x0 x1 x2 : ο . x0 ⟶ x1 ⟶ x2 ⟶ and (and x0 x1) x2Theorem 46096..MetaMonadI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ι → ι . ∀ x6 x7 : ι → ι . (∀ x8 . x0 x8 ⟶ x3 (x4 (x4 (x4 x8))) (x4 (x4 x8)) (x4 x8) (x7 x8) (x5 (x4 (x4 x8)) (x4 x8) (x7 x8)) = x3 (x4 (x4 (x4 x8))) (x4 (x4 x8)) (x4 x8) (x7 x8) (x7 (x4 x8))) ⟶ (∀ x8 . x0 x8 ⟶ x3 (x4 x8) (x4 (x4 x8)) (x4 x8) (x7 x8) (x6 (x4 x8)) = x2 (x4 x8)) ⟶ (∀ x8 . x0 x8 ⟶ x3 (x4 x8) (x4 (x4 x8)) (x4 x8) (x7 x8) (x5 x8 (x4 x8) (x6 x8)) = x2 (x4 x8)) ⟶ MetaMonad x0 x1 x2 x3 x4 x5 x6 x7 (proof)Known and3Eand3E : ∀ x0 x1 x2 : ο . and (and x0 x1) x2 ⟶ ∀ x3 : ο . (x0 ⟶ x1 ⟶ x2 ⟶ x3) ⟶ x3Theorem f4ba2..MetaMonadE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ι → ι . ∀ x6 x7 : ι → ι . MetaMonad x0 x1 x2 x3 x4 x5 x6 x7 ⟶ ∀ x8 : ο . ((∀ x9 . x0 x9 ⟶ x3 (x4 (x4 (x4 x9))) (x4 (x4 x9)) (x4 x9) (x7 x9) (x5 (x4 (x4 x9)) (x4 x9) (x7 x9)) = x3 (x4 (x4 (x4 x9))) (x4 (x4 x9)) (x4 x9) (x7 x9) (x7 (x4 x9))) ⟶ (∀ x9 . x0 x9 ⟶ x3 (x4 x9) (x4 (x4 x9)) (x4 x9) (x7 x9) (x6 (x4 x9)) = x2 (x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ x3 (x4 x9) (x4 (x4 x9)) (x4 x9) (x7 x9) (x5 x9 (x4 x9) (x6 x9)) = x2 (x4 x9)) ⟶ x8) ⟶ x8 (proof)Theorem 16309..MetaMonad_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ι → ι . ∀ x6 x7 : ι → ι . MetaNatTrans_strict x0 x1 x2 x3 x0 x1 x2 x3 (λ x8 . x8) (λ x8 x9 x10 . x10) x4 x5 x6 ⟶ MetaNatTrans_strict x0 x1 x2 x3 x0 x1 x2 x3 (λ x8 . x4 (x4 x8)) (λ x8 x9 x10 . x5 (x4 x8) (x4 x9) (x5 x8 x9 x10)) x4 x5 x7 ⟶ MetaMonad x0 x1 x2 x3 x4 x5 x6 x7 ⟶ MetaMonad_strict x0 x1 x2 x3 x4 x5 x6 x7 (proof)Theorem 80e83..MetaMonad_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ι → ι . ∀ x6 x7 : ι → ι . MetaMonad_strict x0 x1 x2 x3 x4 x5 x6 x7 ⟶ ∀ x8 : ο . (MetaNatTrans_strict x0 x1 x2 x3 x0 x1 x2 x3 (λ x9 . x9) (λ x9 x10 x11 . x11) x4 x5 x6 ⟶ MetaNatTrans_strict x0 x1 x2 x3 x0 x1 x2 x3 (λ x9 . x4 (x4 x9)) (λ x9 x10 x11 . x5 (x4 x9) (x4 x10) (x5 x9 x10 x11)) x4 x5 x7 ⟶ MetaMonad x0 x1 x2 x3 x4 x5 x6 x7 ⟶ x8) ⟶ x8 (proof)Definition MetaAdjunctionMetaAdjunction := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ο . λ x5 : ι → ι → ι → ο . λ x6 : ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 : ι → ι . λ x9 : ι → ι → ι → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . λ x12 x13 : ι → ι . and (∀ x14 . x0 x14 ⟶ x7 (x8 x14) (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14)) (x9 x14 (x10 (x8 x14)) (x12 x14)) = x6 (x8 x14)) (∀ x14 . x4 x14 ⟶ x3 (x10 x14) (x10 (x8 (x10 x14))) (x10 x14) (x11 (x8 (x10 x14)) x14 (x13 x14)) (x12 (x10 x14)) = x2 (x10 x14))Definition MetaAdjunction_strictMetaAdjunction_strict := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ο . λ x5 : ι → ι → ι → ο . λ x6 : ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 : ι → ι . λ x9 : ι → ι → ι → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . λ x12 x13 : ι → ι . and (and (and (and (MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11)) (MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x14 . x14) (λ x14 x15 x16 . x16) (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12)) (MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x14 . x8 (x10 x14)) (λ x14 x15 x16 . x9 (x10 x14) (x10 x15) (x11 x14 x15 x16)) (λ x14 . x14) (λ x14 x15 x16 . x16) x13)) (MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13)Theorem fd494..MetaAdjunctionI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . (∀ x14 . x0 x14 ⟶ x7 (x8 x14) (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14)) (x9 x14 (x10 (x8 x14)) (x12 x14)) = x6 (x8 x14)) ⟶ (∀ x14 . x4 x14 ⟶ x3 (x10 x14) (x10 (x8 (x10 x14))) (x10 x14) (x11 (x8 (x10 x14)) x14 (x13 x14)) (x12 (x10 x14)) = x2 (x10 x14)) ⟶ MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 (proof)Theorem e6292..MetaAdjunctionE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ ∀ x14 : ο . ((∀ x15 . x0 x15 ⟶ x7 (x8 x15) (x8 (x10 (x8 x15))) (x8 x15) (x13 (x8 x15)) (x9 x15 (x10 (x8 x15)) (x12 x15)) = x6 (x8 x15)) ⟶ (∀ x15 . x4 x15 ⟶ x3 (x10 x15) (x10 (x8 (x10 x15))) (x10 x15) (x11 (x8 (x10 x15)) x15 (x13 x15)) (x12 (x10 x15)) = x2 (x10 x15)) ⟶ x14) ⟶ x14 (proof)Theorem d6aa5..MetaAdjunction_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11 ⟶ MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x14 . x14) (λ x14 x15 x16 . x16) (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12 ⟶ MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x14 . x8 (x10 x14)) (λ x14 x15 x16 . x9 (x10 x14) (x10 x15) (x11 x14 x15 x16)) (λ x14 . x14) (λ x14 x15 x16 . x16) x13 ⟶ MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 (proof)Theorem 29671..MetaAdjunction_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ ∀ x14 : ο . (MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11 ⟶ MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x15 . x15) (λ x15 x16 x17 . x17) (λ x15 . x10 (x8 x15)) (λ x15 x16 x17 . x11 (x8 x15) (x8 x16) (x9 x15 x16 x17)) x12 ⟶ MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x15 . x8 (x10 x15)) (λ x15 x16 x17 . x9 (x10 x15) (x10 x16) (x11 x15 x16 x17)) (λ x15 . x15) (λ x15 x16 x17 . x17) x13 ⟶ MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ x14) ⟶ x14 (proof)Theorem db40a..MetaAdjunctionMonad : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11 ⟶ MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x14 . x14) (λ x14 x15 x16 . x16) (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12 ⟶ MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x14 . x8 (x10 x14)) (λ x14 x15 x16 . x9 (x10 x14) (x10 x15) (x11 x14 x15 x16)) (λ x14 . x14) (λ x14 x15 x16 . x16) x13 ⟶ MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ MetaMonad x0 x1 x2 x3 (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12 (λ x14 . x11 (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14))) (proof)Theorem 07be6..MetaAdjunctionMonad_strict : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ MetaMonad_strict x0 x1 x2 x3 (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12 (λ x14 . x11 (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14))) (proof) |
|